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Abstract
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Background: Anthocyanins contribute to coloration and antioxidation effects in different plant tissues. MYB
transcription factors have been demonstrated to be a key regulator for anthocyanin synthesis in many plants.
However, little information was available about the MYB genes in the halophyte species Eutrema salsugineum.

Result: Here we report the identification of an important anthocyanin biosynthesis regulator £sMYB90 from
Eutrema salsugineum, which is a halophyte tolerant to multiple abiotic stresses. Our phylogenetic and localization
analyses supported that £sMYB90 is an R2R3 type of MYB transcription factor. Ectopic expression of EsMYB90 in
tobacco and Arabidopsis enhanced pigmentation and anthocyanin accumulation in various organs. The
transcriptome analysis revealed that 42 genes upregulated by £sMYB90 in 35S:EsMYB90 tobacco transgenic plants
are required for anthocyanin biosynthesis. Moreover, our gRT-PCR results showed that EsMYB90 promoted
expression of early (PAL, CHS, and CHI) and late (DFR, ANS, and UFGT) anthocyanin biosynthesis genes in stems,
leaves, and flowers of 35S5:EsMYB90 tobacco transgenic plants.

Conclusions: Our results indicated that £sMYB90 is a MYB transcription factor, which regulates anthocyanin
biosynthesis genes to control anthocyanin biosynthesis. Our work provides a new tool to enhance anthocyanin
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Background

Flavonoids which are derivatives of the phenylpropanoid/
flavonoid pathway mainly contain proanthocyanidins
(PAs), anthocyanins and flavonols [1-3]. As important
pigments, anthocyanins are responsible for red, purple,
violet and blue colors in flowers, fruits, and leaves, which
determine economic traits of crops and ornamental plants
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[4-7]. Anthocyanins are the end products of a specific
branch in the phenylpropanoid/flavonoid biosynthesis
pathway. Enzymes involved in anthocyanin biosynthesis
have been extensively studied in many plant species [8].
Catalyzed by phenylalanine ammonia-lyase (PAL), the ini-
tial step of the flavonoid pathway is the conversion of
phenylalanine into trans-cinnamic acid [9], while chalcone
synthase (CHS) catalyzes the first committed step in the
flavonoid biosynthesis to form naringenin chalcone. Chal-
cone isomerase (CHI) cyclizes chalcone to form narin-
genin [8]. The naringenin is then converted into
dihydrokaempferol (DHK) by flavanone 3 p-hydroxylase
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(F3H). DHK is further hydroxylated to dihydroquercetin
(DHQ) by flavonoid 3’-hydroxylase (F3’'H), or to dihydro-
myricetin (DHM) by flavonoid 3',5-hydroxylase (F3’5’H).
Dihydroflavonol 4-reductase (DFR) converts DHQ into leu-
cocyanidin, which is further converted into anthocyanidins
by anthocyanidin synthase (ANS). Finally, UDP-glucose: fla-
vonoid 3-O-glucosyltranferase (UFGT) catalyzes glycosyla-
tion of anthocyanidins to form anthocyanins [8, 10-12].

MYB transcription factors play a central role in regulating
expression of genes encoding major enzymes for anthocya-
nin biosynthesis via forming the transcriptional complex
containing MYB-bHLH-WD40 (MBW) [1, 13—15]. Expres-
sion of early biosynthesis genes (EBGs) such as CHS and
CHI, is regulated by MYB11, MYB12 and MYBII],
whereas PAP1 to PAP4 (AtMyb75, AtMyb90, AtMyb113,
and AtMybl14) control expression of late biosynthesis
genes (LBGs) including DFR, ANS, and UFGT in Arabidop-
sis [16, 17]. In Arabidopsis, up-regulation of one of MYB75,
MYB90, MYBI113 and MYB114 genes is sufficient to in-
crease anthocyanin accumulation in young leaves [15, 17].
For example, the well-known Arabidopsis AtMYB75
(PAPI) gene directs anthocyanin production in leaves,
roots, flowers, and fruits [18, 19]. Overexpression of
AtMyb75 in Arabidopsis and tobacco results in upregula-
tion of PAL, CHS and DFR genes [19, 20]. Similarly,
AtMYB?75 induces anthocyanin production in tomato (So-
lanum lycopersicum L.) via promoting the DFR expression
[18]. Furthermore, the sequence variation of AtMYB90
(PAP2) is causal for natural variation in anthocyanin accu-
mulation [17, 21]. AtMYB90 may act together with TTG1
(a WD40 protein) and different bHLH partners including
TT8, GL3 or EGL3 [15, 18, 22]. Moreover, in Arabidopsis
the ternary complexes formed by R2R3-MYB, bHLH and
the WD repeat protein activate the biosynthetic genes re-
quired for proanthocyanidin accumulation in the innermost
cell layer of the seed coat [23]. The R2R3 MYB protein
TT2 (MYB123) is also a key regulator of proanthocyanidin
accumulation in developing seeds [24].

MYB transcription factors are involved in regulation of
anthocyanin synthesis in many plants, such as Arabidop-
sis [15, 17, 24, 25], cauliflower (Brassica oleracea var bo-
trytis) [26], bok choy (Brassica rapa var. chinensis) [27],
apple (Malus x domestica) [11, 28-30], peach (Prunus
persica) [14, 31], pear (Pyrus pyrifolia) [13, 32, 33],straw-
berry (Fragaria x ananassa) [34], snapdragon (Antirrhi-
num majus) [35], Chrysanthemum [10], grape hyacinth
(Muscari armeniacum) [36], grapevine (Vitis vinifera)
[37, 38], chinese bayberry (Myrica rubra) [6, 39], Epi-
medium sagittatum [40, 41], poplar (Populus spp) [42]
and potato (Solanum tuberosum L) [43]. In addition,
some MYB genes are up-regulated under various stress
conditions [15, 17]. However, the transcriptional regula-
tion of anthocyanin synthesis by MYB in stress-tolerant
plants is not well studied. Eutrema salsugineum (salt
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cress), a stress-tolerant model halophyte, is highly toler-
ant to cold, salt, drought, oxidative stress, and nitrogen
deficiency. In Eutrema salsugineum, many stress-tolerant
related genes, such as SOSI1, HKTI, and nsLTP4, have
been identified [44—49]. By analyzing the differentially
expressed regulatory genes between Arabidopsis and
E.salsugineum, it was found that the regulatory functions
of 307 transcription factors in 50 different families were
significantly different [50]. Another study found that
EsMYB96/WAXI from E.salsugineum under the RD29A
promoter improved drought tolerance with increased ac-
cumulation of cuticular wax and ascorbic acid in trans-
genic Arabidopsis [51]. So far, there is no research
report on the anthocyanin synthesis of EsMYBs in E.sal-
sugineum. Here, we reported our functional analysis of
the MYB transcription factor EsMYB90 in anthocyanin
synthesis. Our phylogenetic and localization analyses
suggest that ESMYB90 is an R2R3 type of MYB tran-
scriptional factor. Ectopic expression of EsMYB90 in to-
bacco and Arabidopsis led to significantly increased
pigmentation and production of anthocyanins in leaves,
stems, and flowers. Our further RNA-seq and qRT-PCR
analyses showed that EsSMYB90 promoted expression of
anthocyanin early biosynthesis genes (EBGs: NtCHS,
NtCHI, and NtF3H) and late biosynthesis genes (LBGs:
NtDFR, NtANS, and NtUFGT) in 35S:EsMYB90 tobacco
transgenic plants. Our study identified a MYB transcrip-
tion factor, which plays an important role in plant
anthocyanin biosynthesis.

Results

Database mining identifies ESMYB90, a candidate
regulator for anthocyanin synthesis

Eutrema salsugineum is a stress-tolerance halophyte,
which produces purple flower buds after vernalization
[52]. Since MYB genes are required for anthocyanin syn-
thesis [13, 15, 36], we identified which MYB controls this
purple phenotype in E. salsugineum. After comparing
MYB genes obtained from the transcriptome of E. salsu-
gineum based on our previously published results [46],
with 72 MYB genes known acting as proanthocyanin
(PA) and anthocyanin regulators in other plants, we
found one candidate MYB gene, named as EsMYB90.

To determine the relationship of EsMYB90 to charac-
terized flavonoid and PA MYBs, we performed similarity
analysis at the protein level. Our results showed that
EsMYB90 has 80.5, 78.9, 78.4, 74.4, 69.4, 65.9, 50% iden-
tities respectively to 7 MYB proteins, ie. BoMYBI,
AtMYB90, BrMYB114, AtIMYB75, CrMYB114, AtMYB11
3, and AtMYB114 (Fig. la). In addition, similarities
between EsMYB90 and other 10 MYB proteins range
from 44.1 to 39.0% (Fig. 1a). Those MYB proteins with
high similarities to EsMYB90 belong to the class of
R2R3-MYB, which have a conserved DNA-binding
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Fig. 1 Alignment and phylogenetic analysis of £sMYB90 and other MYB proteins. a The £sSMYB90 protein sequence was aligned with a set of
related R2R3-MYB proteins from 10 plant species. Identical amino acids are shaded in dark blue, and the greater than or equal to the identity of
75, 50, and 33% are indicated in shade of pink, light blue, and yellow, respectively. R2 and R3 domains refer to two repeats of the MYB DNA
binding domain. Box (A): the conserved motif ANDV in the R3 domain for dicot anthocyanin-promoting MYBs; Box (B): the C-terminal-conserved
motif KPRPR [S/T] F for Arabidopsis anthocyanin-promoting MYBs; Black arrows: the specific residues of [D/E]Lx,[R/KlxsLxsLx3R that confer to the
interaction with bHLH. b Phylogenetic analysis of £sMYB90 and other 28 MYB proteins. The MYB protein sequences were downloaded from the
GenBank database with accession numbers showed in the diagram. EsSMYBS5, EsSMYB90 and EsMYB96 are from E. salsugineum, and EsMYBOO is
highlighted in a bold blue box, while EsMYB5 and EsMYB96 are highlighted in a thin blue box. MYB proteins from the cruciferae plants in the
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domain (R2 and R3 repeats) in the N-terminal and a variable
C-terminal region [41, 53, 54]. The ANDV motif (marked by
red A box in Fig. la), a characteristic identifier for
anthocyanin-promoting MYBs in dicots [10], existed in
EsMYB90, AtMYB90, AtMYB75, AtMYB113, AtMYB114,
AmROSEAL, StMYB113, EsSMYBA1(AGT39060), VVMYBA1,

MrMYBI1, and FaMYBI10, while the C-terminal-conserved
motif KPRPR [S/T] F for Arabidopsis anthocyanin-promoting
MYBs [25, 36] (marked by blue B box in Fig. 1a), was only
found in EsMYB90, AtMYB75, AtMYB90, AtMYB113, and
MrMYB1. Moreover, EsMyb90 has a conserved [D/E]Lx2[R/
K]x3Lx6Lx3R motif (marked by black arrows in Fig. 1a),
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which is required for interaction with R/B-like bHLH proteins
[10, 16].

To further identify the relationship of EsMYB90 to other
MYB proteins, we generated a phylogenetic tree with 29
MYB proteins involved in anthocyanin synthesis in 16 plants.
Our results demonstrated that EsSMYB90 was clustered in the
clade I (Fig. 1b), which consists of AtMYB75, AtMYB9O,
AtMYB113, AtMYB114, BoMYB1 and BrMYB114 that are
important for anthocyanin accumulation [17, 19, 25-27, 55].
EsMYB90 has a relatively farer phylogenetic relationship to
MYB proteins in clades II, III, and IV, although those MYBs
promote biosynthesis of PA and anthocyanin, except for
EsMYB5(XP_006407201) have no research reports yet.

In summary, our results suggest that EsMYB90 is a
R2R3-MYB, which may function in proanthocyanin
and anthocyanin synthesis.

Expression pattern of EsMYB90 in E.salsugineum and
subcellular localization of the protein

In order to detect the expression pattern of
EsMYB90, we collected leaves, petioles, stems, roots
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and flowers of E.salsugineum, and performed qRT-
PCR. Our result showed that EsMYB90 was
expressed in all examined tissues of E.salsugineum,
among which it has the highest expression level in petiole
(Fig. 2b), followed by stems and flowers (Fig. 2c,d), but a
relative lower expression in leaves and roots (Fig. 2a,e).
This result is consistent with the color phenotype of
different tissues observed, suggesting the expression
of EsMYB90 is related to the synthesis of anthocya-
nins (Fig. 2a-f).

To test the subcellular localization of EsMYB90, we
examined the transient expression of YFP-EsMYB90
fusion protein in onion epidermal cells. Our results
showed that YFP signals were observed in both cyto-
plasm and nucleus of the onion epidermal cells ex-
pressing 35S:YFP (Fig. 2g-i), while the YFP signal was
only detected in the nucleus in cells expressing 35S:
YFP-EsMYB90 (Fig. 2j-1). Our result showed EsMYB90
is localized to the nucleus, suggesting that as other
MYB proteins EsSMYB90 also functions as a transcrip-
tional regulator.

2
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2 mm , E -~

%
1mm @& ¥ ' ,’/’ /

7

Relative Expression level

Fig. 2 Expression pattern of £sSMYB90 in E. salsugineum and subcellular localization of the protein. The leaves (a), petioles (b), flowers (c), stems
(d), and roots (e) from thirty-five-week-old E.salsugineum plants were collected for phenotypic observation. f The expression levels of EsMyb90 in
leaves, petioles, flowers, stems, and roots from thirty-five-week-old E. salsugineum, and vertical bars indicate standard errors of the 3 biological
replicates. Transient expression of the 35S:YFP-EsMYB90 in onion epidermal cells showing EsMYB90 is localized in the nucleus. g An onion
epidermal cell expressing 355:YFP showing YFP signals in both cytoplasm and nucleus; (h) An onion epidermal cell expressing 355:YFP in the
bright field; (i) The merged image of G and H; (j) An onion epidermal cell expressing 355:YFP-EsMYB90 exhibiting the YFP signal only in the nucleus; (k)
An onion epidermal cell expressing 35S:YFP-EsMYB0 in the bright field; (I) The merged image of J and K. The control was 35S5:YFP. Bars: 50 um
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Ectopic expression of EsSMYB90 promotes anthocyanin
accumulation in tobacco and Arabidopsis

To investigate the possible function of EsMYB90 in
anthocyanin biosynthesis, we generated the 35S:
EsMYB90 construct to ectopically expression EsMYB90
in tobacco and Arabidopsis (Additional file 1: Fig. 1a).
Eighteen 35S:EsMYB90 transgenic tobacco and 15 35S:
EsMYB90 transgenic Arabidopsis plants were obtained,
respectively (Additional file 1: Fig. 1b,c).

We found that in all developing stages, leaves and
stems in 35S:EsMYB90 tobacco plants appeared purple-
red, and the color became deepened with development
(Fig. 3a-c). In addition, 35S:EsMYB90 tobacco plants
produced purple-red corollas, purple-black sepals, and
purple-black fruit pods, whereas wild-type corollas were
pink, with green sepals and fruit pods (Fig. 3d-f). Our re-
sults from examining anthocyanin production showed that
the total anthocyanin contents in three 35S:EsMYB90 to-
bacco lines were significantly increased in stems, young
leaves (YL), mature leaves (ML), flowers, fruit pods, and
mature seeds, compared with the wild type (Fig. 3g).
Among L1, L2 and L4 three tested lines, the L4 transgenic
line had the highest anthocyanin contents. Compared with
the wild type, the total anthocyanin contents in young
leaves (YL), mature leaves (ML), stems, flowers, fruits
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pods, and mature seeds of the L4 line were increased 95.2,
45.7, 48.8, 4.9, 17.8, and 2.6 folds, respectively (Fig. 3g).
These results indicate that the enhanced pigmentation in
358:EsMYB90 tobacco plants was caused by the increased
synthesis of anthocyanins.

We observed similar phenotypes in 35S:EsMYB90 Arabi-
dopsis transgenic plants. In comparison to the wild-type
plants, the color of leaves, roots, stems, flowers, fruit pods,
and seeds became light-purple to dark-purple in 35S:
EsMYB90 Arabidopsis plants (Fig. 4a-g). In particularly,
seeds from 35S:EsMYB90 Arabidopsis plants exhibited black
color (Fig. 4h,i). Furthermore, the contents of anthocyanins
in the roots, stems, leaves, flowers, and fruit pods at the bolt-
ing stage, and the mature seeds from three 35S:EsMYB90
Arabidopsis transgenic lines (L1, L2, and L3) were signifi-
cantly higher than that in wild-type plants (Fig. 4j).

Collectively, our results suggest that EsMYB90 func-
tions as a transcription factor to promote anthocyanin
biosynthesis in plants.

Transcriptomic analyses show that EsMYB90 is a key
regulator in the proanthocyanidin and anthocyanin
pathway

To examine the molecular mechanisms by which
EsMYB90 controls anthocyanin biosynthesis in the

L4

Fig. 3 Ectopic expression of EsMYB90 increases anthocyanin contents in tobacco. a Five-week-old wild-type (WT) and tobacco transgenic (T)
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seedlings; (b) Nine-week-old WT and tobacco T plants at the flowering stage; (c) Leaves from six-week-old WT as well as L1, L2 and L4 tobacco
transgenic plants; (d) Sepal and corolla from nine-week-old WT and tobacco transgenic plants; (e) Flowers from nine-week-old WT as well as L1,
L2 and L4 tobacco transgenic plants; (f) Fruit pods from nine-week-old WT and tobacco transgenic plants; (g) Anthocyanin contents in stems,
young leaves (YL), mature leaves (ML), flowers, fruit pods of eight-week-old plants, and mature seeds from WT as well as L1, L2 and L4 tobacco
transgenic plants. Vertical bars indicate standard errors of 3 biological replicates and the Student’s t test values are indicated as ¢ (P < 0.001)
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Fig. 4 Ectopic expression of EsMYB90 increases anthocyanin contents in Arabidopsis. (a) Seven-day-old wild-type (WT) and Arabidopsis transgenic
(T) seedlings; (b) Three-week-old WT and Arabidopsis T plants; (c) Roots from seven-week-old WT and Arabidopsis T plants; (d) Leaves from three-week-old
WT and Arabidopsis T plants; (e) Stems from seven-week-old WT and Arabidopsis T plants; (f) Flowers from seven-week-old WT and Arabidopsis T plants; (g)
and (h) Fruit pods from seven-week-old WT and Arabidopsis T plants; (i) Seeds from nine-week-old WT and Arabidopsis T plants; (j) Anthocyanin contents in
roots, stems, leaves, flowers, fruit pods of four-week-old plants and mature seeds, from WT as well as L1, L2 and L3 Arabidopsis transgenic plants. Vertical
bars indicate standard errors of the 3 biological replicates and the Student’s t test values are indicated as ¢ (p < 0.001)
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genome wide, we performed RNA-seq analysis using the
leaves from wild-type and 35S:EsMYB90 tobacco trans-
genic plants. We identified 51,202 differentially
expressed genes (DEGs) in the comparison of wild-type
plant with 35S:EsMYB90 transgenic tobacco plants,
among which 2446 DEGs have log2 Fold Change =1 or
< -1 and a Padj <0.05 (Additional file 2). Furthermore,
1199 out of 2446 DEGs were up-regulated, while 1247
genes were down-regulated (Additional file 2). More-
over, 476 unique DEGs were annotated into 43 GO
terms, wherein the GO terms with the top 3 of the num-
ber of DEGs encoding the binding (249 genes), catalytic
activities (237 genes) and metabolic processes (236
genes) (Fig. 5a, Additional file 3).

We revealed that among 2446 DEGs, 1023 unique
genes were annotated into the 128 KEGG pathways
(Additional file 4). The most prominent KEGG-enriched
genes are involved in secondary metabolite biosyntheses,
followed by plant hormone signaling, flavonoid biosyn-
thesis (Additional file 1: Fig. 2). According to the q value
of DEGs, the top 20 of enrichment paths included the
flavonoid biosynthesis (ko00941), anthocyanin biosyn-
thesis (ko00942), flavone and flavonol biosynthesis
(ko00944), plant circadian rhythm (ko04712),and gluta-
thione metabolism (ko00480;Fig. 5b, Additional file 5).
Moreover, the anthocyanin biosynthesis pathway has the
largest enrichment factor, followed by the pathway of
flavonoid biosynthesis. The flavone and flavonol bio-
synthesis pathways also has a large enrichment factor
(Fig. 5b, Additional file 5).

Mapping to the KEGG reference pathways found that
a total of 57 significantly differential expression genes
were assigned to five secondary metabolic pathways, i.e.
phenylpropanoid biosynthesis (ko00940), flavonoid bio-
synthesis (ko00941),  anthocyanin  biosynthesis
(ko00942), isoflavonoid biosynthesis (ko00943), and fla-
vone and flavonol biosynthesis pathways (ko00944). The
gene names, gene ID, and the combined functional an-
notations were seen in Additional file 6. Out of 57 genes,
42 genes encode PA and anthocyanin biosynthesis en-
zymes, such as PAL (107,802,063, 107,761,482 and 107,
820,497), CHS (107,826,422, 107,801,774 and 107,813,
613), CHI (107,779,699, 107,810,515 and 107,825,576),
F3H (107,770,893, 107,806,462), DFR (107,803,097,107,
797,232), and ANS/ LDOX (107,819,370, 107,778,118,
107,787,193, 107,787,195 and 107,808,500). Particularly,
six genes encoding UFGT (107,781,346, 107,822,886,
107,781,522, 107,831,042, 107,767,212 and 107,819,220)
in the anthocyanin biosynthesis pathway (ko00942) were
all strongly up-regulated (Fig. 6, Additional file 6). How-
ever, in ko00940-ko00944 pathways, only 15 genes in-
cluding that encoding flavonol synthase/flavanone 3-
hydroxylase (107,794,305, 107,814,657), trans-resveratrol
di-O-methyltransferase-like (107,785,995, 107,797,481),
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and flavone 3'-O-methyltransferase 1-like (107792977),
were down-regulated (Fig. 6, Additional file 6).

Taken together, our RNA-seq results demonstrated
that identified DEGs are significantly enriched in the fla-
vonoid and anthocyanin synthesis pathway (ko00941-
ko00944), suggesting that EsMYB90 play an important
regulatory role in proanthocyanidin and anthocyanin
synthesis.

Validation of RNA-seq results by qRT-PCR

To validate the RNA-seq results, we performed quantita-
tive reverse transcription PCR (qRT-PCR) for 18 genes
which are assigned to 5 groups related to anthocyanin
biosynthesis, antioxidant production, signal transduction,
transcription regulation, and ion channel in tobacco
(Additional file 7). Our results showed that expression
level changes of 5 anthocyanin biosynthesis genes
[NtDFR (107803097), NtLDOX54 (107778118), Nt3GT12
(107781346), Nt3GT36 (107781522), and Nt3GT53
(107831042)] detected by qRT-PCR were in agreement
with the RNA-seq data (Fig. 7a). We obtained similar
qRT-PCR results from examining expression of 4
antioxidant-related genes [NtP450 (107772738), NtCu-
ZnSOD (107806960), NtPOD44-1 (107827231), and
NtPOD44-2 (107797651); Fig. 7b], 4 genes encoding
transcription factors [NtbZIP (107795590), NtMYB3R-1
(107795213), NtMYB4 (107802984), and NtWRKYS53
(107825953); Fig. 7c], NtAKT2/3(107761230) encoding a
potassium channel protein (Fig. 7C), and 4 genes related
to signal transduction and ion channel [NtMAPK3
(107782983), NtMAPK6  (107806359), NtAXISA
(107805986), and NtCaMl1 (107803626); Fig. 7d]. We
found similar differential expression patterns for the
DEGs in the qRT-PCR and RNA-seq data, with a lower
pearson’s coefficient (R2) as 0.9232. Therefore, qRT-
PCR results support that our transcriptome results are
reliable.

EsMYB90 promotes expression of anthocyanin
biosynthetic genes in tobacco

To further elucidate the molecular function of EsMYB90
in proanthocyanin and anthocyanin biosynthesis, we ex-
amined expression of key anthocyanin biosynthesis
genes PAL, CHS, CHI, F3H, F3’H, DFR, ANS/LDOX, and
UFGT in the stems, young leaves (YL) and flowers from
35S:EsMYB90 tobacco transgenic lines (L2, L4) and
wild-type tobacco plants at the flowering stage by qRT-
PCR.

PAL is the first key enzyme in the metabolic pathway
of phenylpropanoid [9]. Expression levels of NtPAL in
stems, leaves and flowers from the L4 line increased 4.6,
7.1, and 2.8 times, respectively, than that of wild type
(Fig. 8a). CHS catalyzes the first step of anthocyanin bio-
synthesis, while CHI catalyzes the cyclization of chalcone



Qi et al. BMC Plant Biology (2020) 20:186 Page 8 of 15
p
e -| v
4 07820497
Ko00940 s 107604110
07791262 1
07823514
07806486
07826141
07763925
07 80048s
— 07807495 0
. 107804864
07772942
(=] 07790248
iz
] 07813613 -
[ 07801263 i
I 107803179
k000941 g7413592
0 07825576 I
07832423
07770893 =2
[— 07806462
I 107815210
07795677 ®
— 07823192 ®
07803097
07797232
07819370
07778118
[ 07787193
07820810 *
I 07787195
07808500
07778746 *
07767471
07806386
07794305
07773708
g
k 4 <
000942 07781503
| — 07831042
p— 07838578
07776486
K003 N s 107786033
ko00944 -> 07792977
— — —
= 3 3 = 5 =
N - w
Fig. 6 Heatmap showing transcription levels of DEGs in flavonoid and anthocyanin synthesis pathways (ko00940-ko00944). Purple solid circles
indicate 107,795,677 and 107,823,192 genes, which also exist in the ko00944 pathway. Green diamonds indicate 107,820,810 and 107,778,746
genes, which can be also found in the ko00942 pathway. Blue triangles indicate 107,781,346 and 107,822,886 genes, which co-exist in the
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molecules to form naringenin [8]. Expression levels of
both NtCHS and NtCHI in stems, leaves and flowers from
the L4 line were significantly increased compared to that
in the wild type (Fig. 8b,c). Whereas, the relative transcript
level of NtF3H in the flowers was slightly down-regulated
in L4 transgenic line (Fig. 8d), and NtF3’H transcripts in
the stems were down-regulated in L2 and L4 transgenic
lines (Fig. 8e). Finally, the anthocyanin biosynthesis genes
NtDFR, NtANS and NtUFGT which are required for
anthocyanin biosynthesis at later steps were also signifi-
cantly upregulated by EsMYB90 (Fig. 8f-h).

In summary, our results suggest that EsSMYB90 con-
trols anthocyanin biosynthesis by promoting expression
of anthocyanin biosynthesis genes, particularly LBGs.

Discussion
Anthocyanins are main contributors to the coloration of
plants, and the color is an important determinant for

fruit and flower quality [8, 14, 56]. Flavonoids such as
anthocyanins are also capable of scavenging oxygen free
radicals produced in cells, thus have antioxidant activity
[57, 58]. The antioxidant activity of anthocyanins de-
pends on the degree of B-ring hydroxylation, acylation,
and glycosylation [56]. Anthocyanins, as an antioxi-
dant, can reduce the peroxidation of lipids and delay
the aging of cells. Meanwhile, anthocyanins protect
plants from damage caused by biotic and abiotic
stresses and allow plants to adapt to environmental
changes [59]. In higher plants, PAs and anthocyanin bio-
synthesis are regulated by different sets of MYB-bHLH-
WD40 (MBW) complexes, and the R2R3-MYBs play vital
roles in transcriptional regulation of anthocyanins biosyn-
thesis [12, 19, 20, 23, 25, 34, 35]. Our results shed light on
the molecular mechanism by which a novel R2R3-MYB
controls PA and anthocyanin biosynthesis via promoting
expression of PA and anthocyanin biosynthesis genes.
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In Arabidopsis, MYB75, MYB90, MYB113, and
MYB114 function redundantly by participating in the
MBW (MYB-bHLH-WD40) complex to regulate PA and
anthocyanin biosynthesis. Overexpression of one of
these four MYBs is sufficient to increase anthocyanin ac-
cumulation in young leaves [15, 17]. EsMYB90 is a
R2R3-MYB, containing a conserved [D/E]JLx2[R/
K]x3Lx6Lx3R motif (black arrows) required for inter-
action with R/B-like bHLH proteins, which was not
found in EsMYB15 (XP_006406061), EsMYB106(XP_
006390428), EsMYB108 (XP_006407939), EsMYB -re-
lated protein 340 (XP_006395259) from E. salsugineum.
The ANDV (red box A) and KPRPR [S/T] F motifs (blue
box B) characterizing anthocyanin-promoting MYBs
exist in EsSMYB90 protein but not in other five EsMYBs
[MYB5 (XP_006407201), MYB15, MYB106, MYB108,
MYB-related Protein 340] (Additional file 1: Fig. 3). In
Arabidopsis and some other higher plants, the anthocya-
nin pathway is controlled by multiple MYB transcrip-
tional factors [1]. For instance, at least four MBW
complexes assembled with various MYBs are involved in
the PA accumulation in the innermost cell layer of Ara-
bidopsis seed coat [23]. Thus, our results suggest that
different from other plants less MYBs regulate anthocya-
nin biosynthesis in E. salsugineum and EsMYB90 is a
major player.

The regulatory mechanisms for flavonoid biosynthesis
are conserved in higher plants [1]. The MYB proteins
usually determine the involvement of MBW complexes
in specific pathways [1, 60]. In the MBW complex,

MYBs have the highest binding specificity compared
with bHLH and WD40. MYB and bHLH bind to at least
one of three conserved cis elements, i.e. MYB-core, AC-
rich, and E/G-box, in promoters of four LBGs (late bio-
synthesis genes: DFR, TT19, TT12, and AHA10), which
specify their expression in the seed coat of Arabidopsis
[23, 60]. Expression of LBGs are regulated by MYB75,
MYB90, MYB113 and MYB114 in Arabidopsis [15, 16].
Our phylogenetic analysis showed that EsMYB90 was in
the same clade with Arabidopsis MYB75, MYB9O0,
MYBI113, and MYB114, suggesting that EsMYB90 may
play a more important role in regulation of LBGs (DFR,
ANS/LDOX and UFGT) expressions, which is in accord-
ance with our research results. In addition, our results
show that EsSMYB90 promotes expression of early biosyn-
thesis genes, such as PAL, CHS, CHI, and F3H which
agrees with findiCngs in other plants [1, 10, 36]. Further-
more, it is possible that ESMYB90 upregulates expressions
of NtMYB and NtbHLH genes involved in anthocyanin
biosynthesis,  because  expressions of  NtMYB3
(107820930), NtMYB4 (107,802,984, 107,769,018, 107,815,
562, 107,760,435), NtMYB44 (107,816,351, 107,759,750),
MYB-like (107,807,565, 107,795,213), NtbHLH (107,791,
671, 107,791,200), NtbHLH92 (107785534), NtbHLH18
(107811232), and NtbHLH35(107774314) were signifi-
cantly increased in 35S:EsMYB90 tobacco transgenic
plants (Additional file 2).

Overall, our results showed that ectopic expression of
the novel EsMYB90 gene can strongly induce the antho-
cyanin biosynthesis by promoting expression of
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replicates. b and c indicate p <0.01 and p < 0.001, respectively

Fig. 8 Expression analysis of anthocyanin biosynthesis genes in stem, leaf and flower from two EsMYB90 transgenic tobacco lines at the flowering
stage. WT: Wild Type; L2 and L4: two independent 35S:EsMYB90 lines. Ntubi2 (Ntubiquitin 2, LOC107772211) was used as an internal control. (a)
NtPAL (XM_016625506.1); (b) NtCHS (NM_001326166.1); (c) NtCHI (NM_001325287.1); (d) NtF3H (NM_001325083.1); (e) NtF3’H (NM_001325608.1); (f)
NtDFR (NM_001325732.1); (g) NtLDOX (NM_001326043.1); (h) NtUFGT (NM_001325312.1). The AACt method was used to determine the relative
expression, and expression levels of tested genes in the wild type were set to 1. Vertical bars represent standard errors of three biological

anthocyanin biosynthesis pathway genes, particularly
functioning in the LBGs. Our study also paved the way
for the application of EsMYB90 to genetically engineer-
ing crops and ornamental plants.

Conclusions

EsMYB90, a R2R3 MYB transcription factor, is localized
in nucleus. 355:EsMYB90 transgenic tobacco and Arabi-
dopsis showed purple-red, purple-black phenotypes, and
accumulated more anthocyanin in the leaves, stems and
flowers compared with wild type. The results showed
that ectopic expression of EsMYB90 in stems, leaves and
flowers of transgenic tobacco could significantly en-
hanced the expression of anthocyanin biosynthetic genes
including EBGs (PAL, CHS, and CHI) and LBGs (DFR,
ANS, and UFGT), particularly in LBGs. The study sug-
gested that EsMYB90 plays a key role in regulating
anthocyanin biosynthesis, and it provide new clues to in-
crease the content of anthocyanin in transgenic plants.

Methods

Plant materials and growth conditions

The seeds of Eutrema salsugineum (Shandong ecotype),
Arabidopsis thaliana (Columbia-0) and tobacco (Nicoti-
ana tabacum cv SR1) are preserved and presented by
Shandong Provincial Key Laboratory of Plant Stress Re-
search, College of Life Science, Shandong Normal
University.

Wild-type and transgenic plants of Nicotiana tabacum
and Arabidopsis thaliana (Columbia-0) were grown in a
mixture of vermiculite, perlite and peat moss (1:1:1) in a
greenhouse with 25°C, a photoperiod of 16 h light /8 h
dark. Eutrema salsugineum were grown in a growth
chamber with 22°C, a photoperiod of 16h light /8h
dark and 70% relative humidity.

T3 generation homozygous transgenic and wild-type
tobacco plants were used for analyses. After 8 weeks
growth of tobacco plants at the period of 8-9 leaves, the
sixth leaves of wild-type and transgenic plants were col-
lected for transcriptome and qRT-PCR identification of
the transcriptome. Three biological repeats for transcrip-
tome and qRT-PCR were performed. In tobacco, stems,
young leaves (YL), mature leaves (ML), flowers, and fruit
pods at the flowering stage, and mature seeds were used
to determine the content of anthocyanins, meanwhile
the stems, young leaves (YL), and flowers were used to

examine expression of anthocyanin biosynthesis genes.
Similarly, Arabidopsis roots, stems, leaves, flowers, and
fruit pods from plants growing 4 weeks, and mature
seeds were used to determine the content of anthocya-
nins. In all cases, samples were frozen immediately in li-
quid nitrogen and stored at — 80 °C. Three repeats of all
tests were conducted.

Phylogenetic analysis

A set of associated MYB protein sequences were down-
loaded from the NCBI and multiple sequence alignments
were carried out using the DNAMAN software (Version
5.2.2). The phylogenetic tree was constructed using the
MEGAG6 software with the neighbor-joining method.

Subcellular localization of EsMYB90

The coding region of EsMYB90 was PCR-amplified by
YFPMYB-F and YFPMYB-R primers with Sacl and Sacll
sites, respectively (Additional file 9) and then cloned in
to the YFP-pCAT vector, resulting in the 35S:YFP-
EsMYB90-pCAT vector. The onion epidermal cells were
transformed with the 35S:YFP-EsMYB90-pCAT and
YFP-pCAT (control) plasmids, respectively, using the
plasmid bombardment method [61]. The transformed
cells were incubated at 25 °C for 16—24 h, then the flor-
escence signals were observed and recorded with a fluor-
escence microscope (BX51, model 7.3, Olympus, Tokyo,
Japan). At least three replicates for each construct were
performed.

RNA isolation and cDNA synthesis

Total RNAs were isolated from 0.5 g of young leaves of
Eutrema salsugineum and Nicotiana tabacum using the
TRIzol Reagent (Life Technologies) or Quick RNA isola-
tion kit (Biotech biotechnology company, Beijing,
China). The RNA concentration and purity(A260/A280)
were measured with a NanoDrop ND1000 spectropho-
tometer (NanoDrop Technologies, Wilmington, DE,
USA). First-strand cDNA was synthesized using the Re-
ver Tra Ace qPCR RT Master Mix with gDNA Remover
(Toyobo, Japan). Briefly, RNA was heat-denatured at
65°C for 5min and immediately placed on the ice for
cooling, then 2 pL of 4 x DN Master Mix, 0.5 pg-0.5 pug
of RNA template and nuclease-free water were added to
8 pL of volume. After 5 min of incubation at 37°, 5 x RT
Mater Mix II was added to make 10 pL of final volume.
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RT reaction was carried out at 37 °C for 15 min, 50°C
for 5 min, 98 °C for 5 min to obtain 10 pl of cDNA.

Construction generation and plant transformation

The whole coding sequence of EsMYB90 was PCR-
amplified from the Eutrema salsugineum cDNA using
the forward primer 5'-CCGGAATTCTTTAGAATAC
TTATTGGTCC-3" and the reverse primer 5'-CGCGGA
TCCATCAGAGACAGATATTAGTTGG-3" with EcoR
I and BamH 1 restriction enzyme sites at the 5 and 3,
respectively (Additional file 9). The resulting EsMYB90
fragment was cloned into the pMD18-T vector (Takara,
USA). After sequencing confirmation, the EsMYB90
fragment was subcloned into the EcoRI - BamHI sites of
the pCAMBIA3301H vector, where EsMYB90 was under
the control of the CaMV 35S promoter. The expression
vector (35S:EsMYB90-pCAMBIA3301H) was finally in-
troduced into the Agrobacterium tumefaciens strain
GV3101.

Transformation of N. tabacum was performed using
the leaf disc method essentially as reported by Horsch
et al. [62]. Transgenic tobacco seedlings were selected
on the MS medium containing 6 mg / L of bastar and
300mg / L of cefalexin. Transformation of A. thaliana
Columbia-0 was performed using the floral-dipping
method [63] and transformants were screened by spray-
ing 0.1% of bastar herbicide. The presence of the trans-
gene was further confirmed by PCR using specific
primers for EsMYB90. The homozygous transgenic N.
tabacum and A. thaliana were used for subsequent
phenotypic and functional analysis.

Anthocyanin analysis

Stems, young leaves (YL), mature leaves (ML), flowers,
and fruit pods of tobacco growing about 8 weeks at the
flowering stage, and the mature seeds were sampled, re-
spectively. Similarly, stems, leaves, flowers, fruit pods,
and roots of Arabidopsis growing about 4 weeks at the
bolting period, as well as the mature seeds were also col-
lected. All materials were frozen immediately in liquid
nitrogen and ground to powders. The anthocyanin con-
tent was determined using an improved method de-
scribed by Neff and Chory [64]. The measurements of
As3p and Ags; were conducted with a spectrophotometer
(UV-1800, Shimadzu). The results were calculated by
the eq. (A530-0.25*A657)/fresh weight. Three replicates
were performed for each sample.

RNA-seq and bioinformatic analysis

Total RNAs from the sixth leaves of wild-type and
EsMYB90 transgenic tobacco at the 7-8 leaves stage
were isolated using a Quick RNA isolation kit (Bioteke
Corporation, Beijing, China). The RNA library construc-
tion and sequencing were performed in the BGI
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Corporation (Shenzhen, China) using the BGISEQ-500
platform. Three independent biological replicates were
carried out.

The low-quality reads (more than 20% of the bases
qualities are lower than 10), reads with adaptors and
reads with unknown bases (N bases more than 5%) were
filtered to get the clean reads. The clean reads were
mapped to the reference genome using HISAT [65].
Meanwhile, the clean reads were mapped to the refer-
ence transcripts using Bowtie2 [66]. The clean reads
were assembled into unigenes, followed by the unigene
functional annotation, etc., and calculate the unigene ex-
pression levels of each sample [67]. Finally, we identified
DEGs (differential expressed genes) and performed clus-
tering analysis and functional annotations. DEGs with
the GO and KEGG annotation results were classified ac-
cording to the official classification, and the GO and
KEGG pathway functional enrichment were performed
using phyper in the R software. Transcription Factor
Prediction of DEG: The ORF of each DEG were founded
using getorf and aligned to TF domains (from PlntfDB)
using hmmsearch [68].

Gene expression analysis by qRT-PCR

To validate the transcriptome results, the real-time
qPCR was performed by the LightCycler® 96 system to
examine expressions of selected genes (Additional file 9)
using the total RNAs extracted from tobacco leaves used
for RNA-seq. Transcriptome data was verified by com-
paring the result of qRT-PCR (-AACT) with RNA-seq
(log2FC).

To examine expression of anthocyanin biosynthesis
genes in different tissues, stems, young leaves (YL) and
flowers of tobacco at the flowering stage were sampled,
respectively. The total RNAs were extracted using the
total RNA rapid extraction kit (Biotech biotechnology
company, China). The first-strand cDNAs were synthe-
sized using the Rever Tra Ace qPCR RT Master Mix
with gDNA Remover (Toyobo, Japan). The qPCR was
performed using the LightCycler® 96 system (Roche,
Switzerland; Supplementary Table S1). Ntubi2 (ubiquitin
2, LOC107772211) was used as an internal reference
gene. Three replicates were performed for each sample.
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