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Abstract

Background: Sucrose phosphate synthase (SPS) genes play vital roles in sucrose production across various plant
species. Modern sugarcane cultivar is derived from the hybridization between the high sugar content species
Saccharum officinarum and the high stress tolerance species Saccharum spontaneum, generating one of the most
complex genomes among all crops. The genomics of sugarcane SPS remains under-studied despite its profound
impact on sugar yield.

Results: In the present study, 8 and 6 gene sequences for SPS were identified from the BAC libraries of S. officinarum
and S. spontaneum, respectively. Phylogenetic analysis showed that SPSD was newly evolved in the lineage of Poaceae
species with recently duplicated genes emerging from the SPSA clade. Molecular evolution analysis based on Ka/Ks
ratios suggested that polyploidy reduced the selection pressure of SPS genes in Saccharum species. To explore the
potential gene functions, the SPS expression patterns were analyzed based on RNA-seq and proteome dataset, and the
sugar content was detected using metabolomics analysis. All the SPS members presented the trend of increasing
expression in the sink-source transition along the developmental gradient of leaves, suggesting that the SPSs are
involved in the photosynthesis in both Saccharum species as their function in dicots. Moreover, SPSs showed the
higher expression in S. spontaneum and presented expressional preference between stem (SPSA) and leaf (SPSB) tissue,
speculating they might be involved in the differentia of carbohydrate metabolism in these two Saccharum species,
which required further verification from experiments.
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Conclusions: SPSA and SPSB genes presented relatively high expression and differential expression patterns between
the two Saccharum species, indicating these two SPSs are important in the formation of regulatory networks and
sucrose traits in the two Saccharum species. SPSB was suggested to be a major contributor to the sugar accumulation
because it presented the highest expressional level and its expression positively correlated with sugar content. The
recently duplicated SPSD2 presented divergent expression levels between the two Saccharum species and the relative
protein content levels were highest in stem, supporting the neofunctionalization of the SPSD subfamily in Saccharum.

Keywords: Sugarcane, S. officinarum, S. spontaneum, Sucrose phosphate synthase (SPS), Polyploidy, BAC libraries,

Background

Sucrose is produced in plant leaves following photosyn-
thesis along with other carbohydrates. The key organic
compound constitutes the most abundant form of sol-
uble storage carbohydrate, which can be utilized directly
by glycolysis or transported from photosynthetic tissues
to non-photosynthetic tissues via the phloem [1]. Su-
crose therefore serves as a source of fixed carbon that
can be distributed systemically throughout the plant,
providing fundamental resources for direct energy pro-
duction or biosynthesis of long chains of biopolymers
such as starch [2] and cellulose [3].

Sucrose is synthesized in the cytosol, starting with the ex-
port of dihydroxyacetone phosphate and glyceraldehyde
phosphate from the chloroplast. The following processes are
catalyzed by a series of enzymes [4], in which sucrose phos-
phate synthase (SPS) is one of the most important ones. SPS
catalyzes the conversion of Fructose-6-Phosphate (F-6-P)
and UDP-Glucose (UDP-G) to Sucrose-6-Phosphate (S-6-P),
providing the substrates for sucrose phosphate phosphatase
(SPP). In the final step, sucrose is generated through the re-
moval of the phosphate group. In addition to the well-
recognized role of SPS in sucrose biosynthesis in source
leaves, it is becoming clear that SPS also plays an important
and key role in heterotrophic cells engaging in the net su-
crose degradation [5]. For example, significant turnover of
the endogenous sucrose pool was observed in germinating
Ricinus cotyledons [6]. This turnover of sucrose is thought to
be involved in a futile cycle of simultaneous synthesis and
cleavage, resulting from changes in the activation rate of SPS
phosphorylation [7]. Therefore, SPS plays a crucial role in
carbohydrate metabolism by regulating the partitioning of
carbon between starch production and carbohydrate (su-
crose) accumulation in many physiological and developmen-
tal processes.

The role of SPS was first demonstrated in wheat germ
extracted by Leloir and Cardini [8] and some plants had
multiple SPS genes and expression of these copies varies
with developmental stages, tissue types and environmen-
tal signals [9-12], suggesting that SPS genes played di-
vergent roles under different conditions. Recent studies
showed that most SPS genes were clustered into three

distinct families (A, B and C) and these genes appear to
have different evolutionary histories in dicots (A family)
and monocots (B family) [4]. Even though one of the
SPS isoforms from sugarcane and its closely related par-
tial sequence from barley were grouped in a family, they
were somewhat more divergent than the remaining dicot
SPSs that have been characterized [4]. SPS transform-
ation experiments indicated that SPS was a major deter-
minant inpartitioning fixed carbon from photosynthesis
in the leaf and in the whole plant [13, 14]. Recently,
Mark simultaneously increased SPS and glutamine syn-
thetase (GS) activities in transgenic tobacco and found
that sucrose was the major determinant of growth and
development [15].

Sugarcane is the most important sugar crop in the world
since it accounts for 80% worldwide sugar yield [16]. Pre-
vious SPS studies in sugarcane showed that the SPS activ-
ity and transcript expression showed higher in mature
internodes than in immature internodes for all studied
cultivars [17]. Meanwhile, compared to the low sugar spe-
cies of sugarcane, the high sugar species showed increased
transcript expressions and enzyme activities of SPS at all
developmental stages [17]. In addition, expression of SPS
decreased significantly in the late maturing sugarcane var-
iety BO91, compared to the early maturing sugarcane var-
iety CoJ64 [18]. The SPS members were predicted based
on public EST databases [19, 20], and DNA fragments of
amplified products from Q165 and IJ76-514 cultivars
have been characterized to allow the identification all pos-
sible alleles [19, 20]. Recent research showed that the N-
terminal region of sugarcane SPS played an important role
in allosteric regulation [21]. Despite the profound and
well-documented role of SPS in sugarcane, the genomic
sequences and biological functions for SPS members have
not been identified in sugarcane due to their complicated
genomes. S. officinarum and S. spontaneum are two of the
most important Saccharum species not only because they
are the major contributors to the genomes of modern sug-
arcane varieties, but they are also quite divergent with
respect to sugar production [22]. In this study, to compre-
hensively characterize the SPS family at the molecular and
evolutionary level as well as the possible functions of the
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SPS family in the two main Saccharum species, we ana-
lyzed the SPS gene family in S. officinarum and S. sponta-
neum and illustrated their evolutionary history, the
structural and expressional differences as well possible
regulatory factors through the utilization of the combina-
torial analysis of transcriptome, metabolome and prote-
ome data.

Results

Identification of SPS gene family in S. officinarum and S.
spontaneum

LA Purple (S. officinarum, 2n = 80) and AP85-441 (the
haploid clone of SES208, 2n = 4x = 32) derived from the
anther culture of SES208 (S. spontaneum, 2n = 64) [23]
representing two major Saccharum species were used
for the construction of the BAC library. Eight and six
SPS-containing BACs were isolated from S. officinarum
and S. spontaneum, respectively (Table 1), with an aver-
age length of 68.6 kb, and maximum length of 127.2 kb
(BAC id: SES23E05). TE annotation suggested that Long
Terminal Repeats (LTRs) were the major repetitive se-
quences in most of isolated BACs (Table 1). The puta-
tive genes including 14 sugarcane SPS sequences were
annotated from the selected BACs (Additional file 1).
Among the 14 SPS genes, 11 contained complete ORFs
(open reading frames), with the length of coding se-
quences ranging from 1404 bp to 3321 bp. For further
validation, these putative SPS genes were blasted against
Sorghum SPS genes and they showed high similarity,
with identities ranging from 91 to 100% at the amino
acid level (Table 2). In this study, we refer to the sugar-
cane SPS genes using SPSA to SPSD according to the se-
quence similarity with Sorghum SbSPSs with a prefix ‘So’
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for S. officinarum and ‘Ss’ for S. spontaneum. We also
identified SPS genes from the recently published Sac-
charum spontanenum genome [24]. Five genes without
alleles were found with a similarity above 91% compared
to 6 BAC sequences (Additional file 2). There were three
genes of SPSD2 (Sspon.004A0021251, Sspon.004
A0021261 and Sspon.004A0021270) in the S. sponta-
neum genome. To identify the duplication of three
SPSD2 genes, a MCScanX program was used to the
analysis referring to the research of Wang et al. [25].
The results indicated that Sspon.004A0021251 may be the
primary gene produced from the whole genome
duplications (WGDs), and Sspon.004A0021261 and
Sspon.004A0021270 were two genes from the tandem du-
plication. Furthermore, to strengthen the reliability of the
sequences, Sspon.007C0001731, Sspon.004A0021270 and
Sspon.004A0021251 were re-annotated (Additional file 3).

Homologs and allelic haplotype analysis of SPS

To identify SPS homologs and alleles in the selected
BACs, analysis of conserved synteny was performed
(Additional file 4). We observed five highly similar syn-
teny blocks among S. officinarum, S. spontaneum and
Sorghum bicolor, indicating that the two Saccharum spe-
cies contained 5 SPS gene family members. Comparison
within each synteny block across the three species
showed high sequence identity at DNA level and con-
served gene order (Additional file 4). For instance, three
SPSDI-containing BAC contigs (LA110E11, SES32E01
and SES69 K24) were identified in Saccharum, two of
which were allelic haplotypes from S. spontaneum and
one from S. officinarum. Meanwhile, the orthologous re-
gion in S. bicolor was also displayed under the three

Table 1 The results of the repeat sequence annotation for BACs containing SPS

Specie BAC ID Probe Transposable elements (%) Tandem repeat sequence (%)
LTR Non-LTR Transposons SSR Satellite Low complexity

S. officinarum (LA Purple) 84F06 SPSA 30.64 262 045 141 0.00 0.00
34B02 SPSB 15.55 1.74 3.71 1.24 0.00 017
154P24 SPSB 19.59 213 161 1.25 0.00 0.13
33C13 SPSC 15.83 0.10 0.94 162 0.00 0.11
10401 SPSC 1228 0.00 794 221 0.00 0.00
75F14 SPSC 3.99 0.00 042 1.80 0.00 0.29
110E1 SPSD1 371 047 6.07 1.11 0.00 031
79G22 SPSD2 0.00 8.09 0.00 1.44 0.00 0.24

S. spontaneum (SES-208) 23E05 SPSA 23.83 261 046 1.58 0.00 0.08
84H16 SPSB 3.70 1.79 6.25 1.01 0.05 0.09
41F02 SPSC 7.75 0.00 344 1.87 0.00 0.00
32E01 SPSD1 11.40 2.54 146 148 0.00 037
69K24 SPSD2 25.54 0.00 193 091 0.00 034
39L16 SPSD?2 442 1.63 2.66 1.52 0.00 0.09
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Table 2 Sequence similarity of SPS gene fragments between Saccharum and Sorghum

Sorghum Saccharum
Gene name Chromosome Gene Length  cDNA Length Exon Gene name Gene Length  Protein Exon Identity*
position (op) (bp) (bp) Length (aa) (%)
SbSPSA Chr9 12456 3183 12 SoSPSA S 4658 468 9 99
(Sb09g028570) SsSPSA  officinarum
S. 11,420 944 11 94
spontaneum
SbSPSB Chr3 5575 3246 12 SoSPSB - S. 5849 1075 12 97
(Sb039043900) SsSPSB - officinarum
S. 5434 1107 12 91
spontaneum
SbSPSC Chr5 5706 3216 9 SoSPSC  S. 6384 1062 9 91
(Sb05g007310) SsSPSC  officinarum
S. 5452 1060 9 91
spontaneum
SbSPSD1 Chr.10 9887 3030 14 SoSPSD1  S. 10,881 982 13 100
(Sb10g025240) SsSPSD1  officinarum
S. 9532 567 12 99
spontaneum
SbSPSD2 Chr4 6689 2880 13 SoSPSD2  S.officinarum 6989 931 13 98
(Sb049005720) SsSPSD2 < 6835 956 13 o8
spontaneum

BAC contigs. These sequences shared similar synteny
blocks, suggesting that SES32E01 and SES69 K24 were
allelic haplotypes in S. spontaneum. Similar results were
observed in SPSA, SPSB and SPSC (Table 1). The SPS
orthologs in the two species were highly similar, with se-
quence identities ranging from 95.6 to 100% under the
pairwise comparison (Additional file 5).

To further compare the SPS allelic haplotypes, we
compared the exon-intron structures of the 14 SPS se-
quences in S. officinarum and S. spontaneum (Fig. 1a).
The SPS genes were clustered together and the alleles
are indicated with a, b or c. As expected, most ortholo-
gous/paralogous pairs showed similar exon-intron struc-
ture. For instance, three SPSC alleles (SoSPSC.a,
SoSPSC.b and SoSPSC.c) were identified in S. officinarum
and one allele (SsSPSC.a) was identified in S. sponta-
neum. Despite the overall similarity in gene structure,
frequent divergence was also observed among the ortho-
logs and haplotypes, though these proteins were highly
conserved at amino acid level. We observed longer gene
length and more exons (11 v.s. 9) in SsSPSA.a compared
to SoSPSA.a. Notably, one exon was inserted after the
second exon in SsSPSA.a and this gene appeared to pos-
sess an additional exon at the end of sequence. In
addition, we identified three SPSB sequences (SoSPSB.a,
SoSPSB.b and SsSPSB.a) in S. officinarum and S. sponta-
neum. SoSPSB.a and SsSPSB.a showed highly similar
exon-intron structure, while the allelic haplotype
SoSPSB.b was quite divergent compared to other SPSBs.
SoSPSB.b was shorter in gene length and possessed fewer

exons compared with SoSPSB.a and SsSPSB.a. This
could be due to allelic variation or more likely resulted
from incomplete genome assembly. Similar results were
also observed in SPSD1. Exons in SsSPSD1.b tended to
be shorter and fewer in number than in SsSPSD1.a and
SoSPSD1.a.

Furthermore, we annotated the transposable elements
(TEs) within the introns of the SPS genes (Fig. 1a). Four
SPS members with the exception of SPSB were revealed
to contain TE. TE insertions existed in the second intron
of SPSC and the last intron of SPSD2 in S. officinarum
but were absent in S. spontaneum. In addition, a large
TE was present in SPSD1 from S. spontaneum, suggest-
ing genomic expansion of SPS genes existed in S.
spontaneum.

Multiple alignment analysis

We performed a multiple alignment analysis for the Sac-
charum SPS genes and regions of interest were marked
with red rectangles, including light-regulated phospho-
serine, putative F-6-P binding site, 14-3-3 regulated
phosphoserine and UDP-Glu binding domain, osmotic-
ally regulated phosphoserine and various aspartate-
proline pairs (Fig. 1b). High sequence similarity was ob-
served in the middle part of SPS proteins. As expected,
the F-6-P binding sites and UDP-Glu binding domains
are highly conserved at the amino acid level (Fig. 1b, II
and III) in most sugarcane SPS proteins. Similarly, the
osmotically regulated phosphoserine (IV) and various
aspartate-proline pairs (V, VI and VII) are conserved as
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Fig. 1 Gene structure (a) and multiple alignment analysis (b) of SPS. Ss and So indicate two Saccharum species, including S. spontaneum and S.
officinarum, respectively. For Fig. 2b, regions of interest were masked with red rectangles: light regulated phosphoserine (1), putative F-6-P binding
14-3-3 regulated phosphoserine and UDP-G binding domain (lll), the osmotically regulated phosphoserine (IV) and various aspartate-

well, suggesting that these regions play important roles
in sugar production. We also observed some mutations
that may differentiate the functions of SPS proteins. For
instance, a couple of mutations in the SsSPSA F-6-P
binding domain (II) likely modified its F-6-P binding ac-
tivity. A conversion from Serine (S) to Leucine (L) in
SPSD family possibly influenced its function in UDP Glu
binding (III). Remarkably, light regulated phosphoserines
(I) were highly divergent, suggesting that the SPS genes
played different roles in response to light regulation. We
further investigated the cis-elements in the promoters of
the 14 SPS genes (Additional file 6). Cis-elements that
are related to the circadian clock, such as circadian and
E-box, were observed in most of Saccharum SPSs. In

addition, cis-elements involved in abiotic stress were
predicted in the promoter region. For instance, ABREs
(ABA-responsive elements) were identified in 6 SPS pro-
moters and MYB-binding sites (MBSs) were found in 11
SPS promoters. These results suggested that Saccharum
SPS genes might be regulated by the circadian clock and
abiotic stress.

Phylogenetic and evolutionary analysis of SPS genes in
plants

To further investigate the evolutionary history of sugar-
cane SPS genes, we first analyzed SPS genes from two di-
cotyledonous plants (including Arabidopsis thaliana and
Vitis vinifera), five monocotyledonous plants (including
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Ananas comosus, S. bicolor, Brachypodium distachyon,
Zea mays and Oryza sativa) and a sole surviving sister
species of all other living flowering plants (Amborella
trichopoda) (Fig. 2a). All the Saccharum SPS genes iden-
tified in this study including alleles were included in the
phylogenetic analysis (Fig. 2b). The result showed that
selected plant SPSs were clustered into 4 classes (SPSA,
SPSB, SPSC and SPSD). Similar to a previous study [4],
SPSA, SPSB and SPSC sub-families are present in both
monocotyledonous and dicotyledonous plants; while the
SPSD gene family only exists in monocotyledonous
plants. This result indicated that SPSD genes emerged
more recently after the monocot-dicot divergence. In
addition, the SPSD gene family had a closer phylogenetic
relationship with SPSA than SPSB and SPSC. In A.
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trichopoda, we only identified two SPS genes (SPSA and
SPSC) (Fig. 2a).

The non-synonymous to synonymous substitution rate
(Ka/Ks) is an indication of selective pressures. A Ka/Ks
ratio < 1 is consistent with a history of negative selection,
while Ka/Ks ratio > 1 indicates a strong positive selection
[26]. We performed a pairwise comparison within each
SPS gene from selected plants (Fig. 2c). Almost all SPS
genes showed that Ka/Ks values were lower than 1, sug-
gesting that these family members were under strong
purifying selection. To further identify the evolutionary
forces acting on the sugarcane SPS genes after the diver-
gence of S. officinarum and S. spontaneum, we investi-
gated the Ka/Ks values of SPS genes in S. bicolor, S.
officinarum and S. spontaneum (Additional file 7).

A A B C D
Amborella trichopoda 1 0 1 0
Vitis vinifera 2 1 1 0
psis thaliana 2 1 1 0
Ananas comosus 1 2 1 0
Saccharum spontaneum 1 1 1 2
Saccharum officinarnum 1 1 1 2
Sorghum  bicolor 1 1 1 2
Zeamays 1 2 1 2
Oryza sativa 1 1 1 2
B 1 1 1 2
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Fig. 2 Evolutionary analysis of SPS family. a The distribution of SPS subfamilies in different plants. b Phylogenetic analysis of SPS gene family in
different plants including S. bicolor, S. officinarum, S. spontaneum, Zea mays, Oryza sativa, Arabidopsis thaliana, Vitis vinifera, Brachypodium
distachyon, Ananas comosus and Amborella trichopoda. ¢ Ka/Ks values of the SPS subfamilies
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Expression profiles of SPS genes in the different tissues of
three developmental stages

To investigate the expression pattern of SPS gene fam-
ilies, two transcriptome databases (See materials and
methods for details) were used for the expressional ana-
lysis from two Saccharum species (S. spontaneum and S.
officinarum).

The expression of SPS genes at three different devel-
opmental stages (seedling, pre-mature stage and mature
stage) were clustered into two trends, demonstrating the
significant expressional preference in the stem or leaves
of the two species (Fig. 3). One trend is that the genes
were much more highly expressed in leaves opposed to
the stem, including SPSB and SPSC genes at these three
developmental stages, which was consistent with a previ-
ous study [27]. Furthermore, SPSB expression was higher
than SPSC, indicating that SPSB was the dominant gene
expressed in the leaves and functioned in the green tis-
sues of the two Saccharum species. The other trend is
that the genes were expressed at significantly higher
levels in the stem compared to those in leaves at all de-
velopmental stages, in particularly SPSA, SPSDI and
SPSD2 in S. officinarum and S. spontaneum. Similarly,
SPSA was the major gene specifically expressed in the
stem, especially at the mature stage, which is similar to a
previous study that one sugarcane SPS gene was
expressed in internodes [17]. Meanwhile, SPSA gene was
the highest expressed of all SPS genes and higher in S.
officinarum than in S. spontaneum, suggesting SPSA may
play an important role in the transportation and storage
of sugarcane sugar.

Interestingly, SPSB expression level was higher in the
leaves of S. officinarum compared with S. spontaneum at
the pre-mature stage, while more SPSA transcripts accu-
mulated in the internodes of S. officinarum at the
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mature stage than S. spontaneum (Fig. 3), suggesting the
differential expressions of SPSA and SPSB may contrib-
ute to the differences in sugar yields between S. offici-
narum and S. spontaneum.

Expression profiles of SPS genes in the segments of
developmental gradients in leaves
Based on the above findings, the present study further
analyzed the SPS expression patterns in the segments of
development gradients in leaves and discovered that cer-
tain expressional patterns in almost all genes in these
two species (Fig. 4a). We found that SPS gene expres-
sions in S. spontaneum were consistent with the con-
tinuous developmental gradient in leaves, while there
were three small peaks in S. officinarum (Fig. 4b). In
additional, the higher specific expression of SPSB in the
leaves of the two species were demonstrated (Fig. 4).
Interestingly, the SPSC expression level was lower than
SPSB although the expression patterns were similar, in-
dicating that the functions of SPSB and SPSC were com-
plementary. Furthermore, this study also found that the
SPSA, SPSC and SPSD2 genes in S. spontaneum had
higher than those in S. officinarum, relatively (Fig. 4a).

SPS protein levels in the two Saccharum species

To further explore the SPS protein levels in sugar syn-
thesis source tissue (leaf) and sucrose accumulation sink
tissue (stem), we performed proteomics analysis on a
gradient in developing leaves and mature stem tissues
(Fig. 5). In leaves, the relative protein content (log2 the
intensity of protein) of SPSB was highest among the
gene families, which was consistent with transcriptome
data. The content of SPSD2 was much higher than that
of SPSB, but only slightly higher than SPSC. The protein
content of SPS only presented very limited variation

Fig. 3 Expression profiles of SPS genes in various samples in two Saccharum species. Seedling, preM and M represent three developmental states:
seedling, pre-mature and mature. In each stage, samples include leaves and internodes
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between the two Saccharum species, except for SPSD1.
The protein contents of the SPS gene families in stem
were much different from those in leaf tissue, supporting
the theory that SPSs are involved in the distribution of
sugar. Importantly, in stem tissue SPSC and SPSD2 pre-
sented protein levels similar to leaf tissue, while, SPSB
and SPSD1 were much lower than in leaf. These results
suggested that the SPSB and SPSD1 contributed to the
synthesis of sugar rather than SPSC and SPSD2. In
addition, SPSA protein was undetectable in the exam-
ined tissues of these two Saccharum species, indicating
the limited contribution of SPSA.

Sugar contents in the two Saccharum species

To further analyze the SPS functions in sugarcane, meta-
bolomics analysis was carried out and the changes in
small molecule concentrations that were closely related
to the phenotype of sucrose trait in two Saccharum spe-
cies were examined. Based on the two sets of metabo-
lome data from leaves at seedling and stems at mature
stage, there were two metabolites, which were directly
associated with SPS enzymes, F-6-P (a substrate during
SPS catalyzing the synthesis of sucrose) and sucrose
(end products of SPS catalytic pathway).
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For the gradient of developing leaf, an increasing trend
of sucrose content was found in S. officinarum and S.
spontaneum as the leaves became into mature (Fig. 6a),
while a generally decreasing trend of F-6-P content was
found in the two species, indicating SPS performed the
same functions during the sucrose synthesis in the two
varieties. For the stems at different developmental states,
sucrose content showed different tendencies among
three species, such as a significant increase in S. offici-
narum and increasing from young stems to the maturing
zone and then declining from the maturing zone to the
mature zone in S. spontaneum (Fig. 6b).The levels of F-
6-P were almost not detectable in three stem nodes from
both S. officinarum and S. spontaneum. Whereas the su-
crose contents in the seedling leaf and the stems were
higher in S. officinarum than in S. spontaneum.

Discussion

Gene evolution of SPS family

In this study, we used an extensive collection of plant
SPS gene members for phylogenetic analysis, and the re-
sults confirmed the previous classification [4], and re-
vealed the existence of three groups (SPSA/B/C)
containing both monocotyledonous and dicotyledonous
and one Poaceae species specific SPSD (Fig. 1b). A. tri-
chopoda only contained two SPS genes (AtrSPSA and
AtrSPSC), suggesting that SPSB newly evolved after the
divergence of A. trichopoda and other flowering plants
(Fig. 2a). The evolutionary history of Saccharum SPS,
which was sorted chronologically, from ancient to more
recent, was SPSA/SPSC, SPSB, SPSD1/SPSD2.

Previous studies showed that SPSD genes emerged
after the monocot-dicot divergence [28]. In our study,
phylogenetic analysis more precisely showed that the
SPSD genes likely evolved from the SPSA clade (Fig. 2b)
and were clustered into two groups, SPSDI and
SPSD2.Interestingly, SPSD genes only existed in Poaceae
plants rather than in A. comosus, which was an out
group to the Poaceae lineage in the Poales order [29],
suggesting that SPSD genes evolved separately within
the Poaceae clade. Within the coding regions, the Ka/Ks
ratios of SPSD genes were much less than 1, indicating
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that purifying selection was the dominant force driving
the evolution of SPSD genes after the speciation of the
two Saccharum species. Molecular evolution analysis re-
vealed that negative selection drove the evolution of
these genes, suggesting their functional importance.

Sorghum is the closest relative in the diploid genera of
Saccharum. Comparative analysis of the orthologs be-
tween Sorghum and Saccharum made it possible to in-
vestigate the specific evolutionary events after the
polyploidization of Saccharum. Previous studies indi-
cated that polyploidy was a powerful player in the accel-
eration of evolutionary adaptation [30]. One research
group detected the rapid spread of beneficial mutations
in tetraploid yeast in response to growth on a poor car-
bon source [31]. To investigate the evolutionary pressure
of SPS genes in polyploidy Saccharum, we calculated the
Ka/Ks ratios in S. bicolor, S. officinarum and S. sponta-
neum (Additional file 7). Almost all the pairwise com-
parisons of Ka/Ks that were statistically significant were
lower than 1 (Fisher test, p <0.05), indicating that SPS
genes in Sorghum and Saccharum were undergoing puri-
tying selection. However, the Ka/Ks ratios within Sac-
charum were significantly higher than between Sorghum
and Saccharum (mean = 0.22 versus mean = 0.12, Mann-
Whitney-Wilcoxon test, p = 0.01775). This result showed
that polyploidy relaxed selection pressure of SPS genes
in Saccharum, which is an expected outcome of gene re-
dundancy in the polyploids.

TEs influence the evolution of SPS genes

TE are a dominant feature of most flowering plant ge-
nomes and greatly contribute to genome evolution and
diversity [32]. TEs are known to have a cis-effect on gene
regulation since the likely DNA and histone methylation
are often associated with the repetitive sequences. A pre-
vious study showed that high levels of TE variation was
observed between S. officinarum and S. spontaneum
[33]. In our research, comparison of SPS genes between
the two sugarcane species displayed frequent TE vari-
ation, indicating that TEs could play important roles in
SPS evolution before and after the divergence of S. offici-
narum and S. spontaneum. For instance, two adjacent
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TEs were inserted into the seventh exon of SoSPSC.a,
SoSPSC.b and SsSPSC.a, suggesting that the events hap-
pened before the divergence of the two sugarcane spe-
cies (Fig. 2a). However, another TE insertion event was
only observed in the second intron of SoSPSC.a and
SoSPSC.b rather than SsSPSC.a, suggesting that SPSCs
were undergoing independent evolution after divergence
of the two Saccharum species.

SPSD genes were unique in monocots and our results
uncovered that they were likely undergoing quite differ-
ent evolution fate. SoSPSD2.a and SsSPSD2.a were con-
served in exon-intron order, gene length as well as TE
distribution (Fig. 2a). However, it seemed that gene
structure of SPSD1 was less conserved and the last exon
of SsSPSD1.a was interrupted by a large TE insertion.
Moreover, the SsSPSD1.b displayed a quite different
exon-intron structure as well as a large TE variation
compared to its allelic haplotype SsSPSDI.a. These re-
sults demonstrated that the two copies of newly evolved
SPS subfamily tended to be functional diverse in sugar-
cane and possibly TE variation was responsible for the
diversity, providing the first evidence that TE contrib-
uted to gene evolution in Saccharum.

Functional divergence of SPS genes between S.
officinarum and S. spontaneum

RNA-seq analysis revealed that the expression of SPSB
in S. officinarum leaves were higher than that in S. spon-
taneum leaves at the pre-mature stage (Fig. 3). Further-
more, the expression of SPS in leaves displayed
consistent trend between these two Saccharum species
as a developmental gradient progressed (Fig. 4), indicat-
ing that the expression of SPS was responded to photo-
synthesis in the seedling leaf.

SPSB presented consistently high expression in S. offi-
cinarum which was consistent with the highest relative
content of SPSB protein based on proteomics analysis,
indicating SPSB may be the major gene of sucrose syn-
thesis in leaf. Combined with metabolome data, we
found in leaves at the seedling stage that sucrose in-
creases and F-6-P decreases, which was in line with the
trend of expression of SPS (especially the SPSB gene
with high expression level) mentioned above which cata-
lyzes the synthesis of sucrose using substrate of F-6-P.
Therefore, in the source tissue leaves, we speculate that
SPS genes play a key role in sucrose synthesis which is
linked with the development of leaves in these two Sac-
charum species. Further correlation analysis revealed
there were significant overall relationships between the
expression of SPSB and the content of sucrose (positive,
r*=0.97 or 0.93) or F-6-P (negative, r*=0.84 or 0.90)
both in S. officinarum and in S. spontaneum (Add-
itional file 8). Since the characteristics of high and low
sugar in cultivated sugarcane were respectively
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contributed by S. officinarum and S. spontaneum, the
gene expression of SPSB may play a significant role in
sucrose synthesis and accumulation. These results re-
vealed that SPSB played a vital role in sugarcane leaves
and they might be responsible for the difference of sugar
at the production process of growth. However, consider-
ing the limited data points for correlation analysis, fur-
ther verification of experimental data is required to
support this speculation.

Besides SPSB, SPSA also showed different expression
patterns at seedling and mature stages between the two
species (Fig. 3). SPSA was expressed at higher levels in S.
officinarum stems than in S. spontaneum stems, which
may be caused by different gene structures given that
there are 9 exons in SoSPSA and 11 exons in SsSPSA
(Fig. 1a). Interestingly, when the expression of SPSA in
different segments of the developing stem and metabo-
lites were compared, a significant nonlinear negative re-
lationship did exist among three species, except for one
special case in S. spontaneum in which the sucrose con-
tent was to some extent correlated with the expression
of SPSA (r*=0.84 or 0.90) in the stem (Additional file
8). This indicates that there could be other genes regu-
lating sucrose synthesis in stem tissue or other influen-
cing factors, resulting in differences in sucrose content
in stems of the three species. Considering the lower ex-
pression of SPS genes in stem tissue than in leaf tissue
and the higher expression levels of SPS genes in S. offici-
narum than in S. spontaneum, lower levels of sucrose
synthesis in stems and high sucrose content in stem
were mainly obtained through sugar transport rather
than sugar synthesis.

The results revealed that SPSD duplicated within the
Poaceae lineage. The gene expression data revealed that
the two SPSDs had similar expression patterns, suggest-
ing functional similarity in this gene subfamily. Further-
more, SPSD maintained similar lower expression levels
in all tissues of sugarcane and there are no specific ex-
pressive features, which is different from wheat SPS
genes but consistent with the research in sugarcane [34].
However, both SPSD gene copies were under strong
purifying selection shown by their Ka/Ks ratio<0.4
(Additional file 7), which demonstrated that the two
SPSDs were not functionally redundant in Saccharum.
Therefore, we assumed that two SPSD subfamilies
shared similar gene functions while possessing divergent
key functional roles in Saccharum. Proteome data
showed that the protein content of SPSD2 was highest
in the developing stem and SPSA protein was not de-
tected in leaves and stem internodes. Combined with the
recent replication events in which SPSD evolved from
SPSA and the high levels of SPSA gene expression in the
stem, we suspected that the high SPSA expression levels
in stem tissue regulates the translation of the highly
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homologous genes of SPSD, which lead to the high pro-
tein levels of SPSD2 and free protein content of SPSA in
stem tissue in both two species.

Interestingly, the present study found SPS expression
was affected by photosynthesis and regulated by circa-
dian rhythm. All SPS in the gradient of developing leaves
displayed differing expression patterns, indicating SPS
expression was synchronized with light assimilation in a
species-specific manner (Fig. 4). Therefore, we assumed
that the SPS contributed to the differential sugar accu-
mulation between the two Saccharum species. Notably,
SPS expression was sometimes regulated by other en-
zymes, for example, SPS had potential functions and
contributed to sucrose synthesis when soluble acid in-
vertase (SAI) was low [35].

Meanwhile, based on the high spatiotemporal specifi-
city of SPSB and SPSA in the SPS gene family and the
simultaneous comparative analysis of transcriptomes,
metabolomes and proteomes, we suspect that the regula-
tion of SPSB and SPSA gene expression are an important
point in the formation of regulatory networks in sucrose
traits among different species of Saccharum. Further-
more, sucrose accumulation is a complex process requir-
ing the involvement of multiple genes for sugar
synthesis, transport and the targeting regulation. In this
way, different patterns of expression of SPS genes may
be formed among different sugarcane species, leading to
different levels of photosynthetic carbon fixation and
even different sugar traits.

Conclusions

We presented a comprehensive analysis of SPS genes in
two Saccharum species, including S. spontaneum and S.
officinarum. By analyzing and comparing these SPS
genes, we concluded three major findings. Firstly, fre-
quent structural variations and mutations were observed
in SPS homologs as well as allelic haplotypes. In
addition, comparison of SPS genes between the two Sac-
charum species displayed several TE insertion/deletion
events, indicating that TEs might play important roles in
SPS evolution before and after the divergence of the two
species. Secondly, the SPSD subfamily in Saccharum was
newly evolved from SPSA after the generation of Poaceae
species. Molecular evolution analysis showed that all the
SPS genes were under negative selection and selection
pressure was reduced under the process of polyploidy.
Thirdly, RNA-seq, metabolome and proteome data un-
covered the different expression patterns of the SPS gene
family between S. officinarum and S. spontaneum, sug-
gesting that SPSA and SPSB are possibly responsible for
the fundamental differences in sugar yields at different
stages. The high expression of SPSB in developing leaves
may play a direct and key role in sucrose synthesis at the
source organization, and the accumulation of high
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sucrose levels In the stem there may be a more complex
regulatory network in which SPSA and SPSD genes are
indirectly involved.

Methods

Plant materials and RNA extraction

Sugarcane species LA-Purple [36, 37] (S. officinarum,
2n = 8x = 80, originated in USA) and SES208 [38] (S.
spontaneum, 2n = 8x = 64, originated in USA) [39, 40]
that were deposited in the National Germplasm Reposi-
tory of Sugarcane (Yunnan, China) and used in the
present study. Plants were grown in plastic pots under
greenhouse conditions (14:10L/D, 30°CL/22°C D and
60% relative humidity) and standard growing practices
in the sugarcane experiment field at Fujian Agricultural
and Forestry University (Fuzhou, China). For the investi-
gation of the different developmental stages and the gra-
dient developmental leaf analysis experiments were
performed as previously described [41]. Tissue of devel-
opmental leaf was collected 3 h into the L period as de-
tailed by Li et al. [42] and the collection of other tissues
was detailed by Ming et al. [29]

RNA from various sugarcane tissue samples were ex-
tracted using Trizol (Invitrogen, USA) according to the
manufacturer’s protocol. RNA was digested with DNase
I (NEB, USA) and the RNA integrity was assessed using
the Agilent Bio-analyzer 2100 system (Agilent Technolo-
gies, CA, USA).

BAC libraries

A list of BAC libraries were constructed from the hap-
loid genome of S. spontaneum (AP85-441, 2n = 4x = 32)
and S. officinarum (LA Purple, 2n = 80). Nuclei were iso-
lated from young leaf tissues following the protocol in
[43]. Briefly, high molecular weight DNA was extracted
and digested into fragments with HindIll. Approximately
100 kb fragments were isolated and inserted into the
pSMART BAC vector (Lucigene, LA). BAC clones which
contained potential SPS genes were sequenced using an
Hlumina Hiseq 2500. There were 74,880 clones in BAC
library of LA Purple based on 195-384 well plates with
150 kb of an average insert size, which provided the 1.5
x and 12 x coverage of the octoploid genome and the
monoploid genome, respectively. For AP85-441, the
BAC library was consisted of 38,400 clones (in the 100—
384 well plates with an average insert size at 120kb),
which was an about 1.5 x coverage of the haploid (tetra-
ploid) genome and an about 6 x coverage of the mono-
ploid genome.

Assembly, annotation of BAC reads and identification of
SPS gene family

The raw reads were assembled using SPAdes 3.6.2 with
default parameters [44]. Firstly, we designed the probes
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using Sorghum SPS sequences (Additional file 9) and
matched the probes against sugarcane BAC libraries. We
then performed De novo assembly and gene annotation
for the selected BACs. To get a better annotation, TEs
and tandem repeat sequences were identified. The as-
sembled contigs were screened using RepeatMasker [45]
for TE annotation and to the DNA subway system
(http://dnasubway.iplantcollaborative.org/) for coding re-
gion annotation using the model of “Annotate a genomic
sequence” referring to the tips on the web page (https://
github.com/CyVerse-learning-materials/dnasubway_
guide). For TE identification, annotation was confirmed
if there was at least 60% identity and a minimum length
of 50 bp with previously annotated plant TEs (ftp://ftp.
plantbiology.msu.edu/pub/data/TIGR_Plant_Repeats/
)-The corresponding coding sequences were translated
into protein by the EXPASy-translate tool (http://web.
expasy.org/translate/).

SPS homologs from other plants, such as Arabidopsis,
maize and so on, were downloaded from NCBI (http://
www.ncbi.nlm.nih.gov/). A blast-based search was per-
formed to identify SPS gene family from S. officinarum
and S. spontaneum, as well as selected plants listed in
Additional file 5. The cutoff was set as E-value less than
10~ %° and identity higher than 85%.

Gene structure, phylogenetic and evolutionary analysis
The exon-intron structures were extracted from gene an-
notation data generated by DNA subway and further dis-
played in GSDS (Gene Structure Display Server) [46]. In
addition, MultAlin [47] program was used to illustrate the
multiple sequence alignment of amino acids and domains
of interest for sugarcane SPS genes. Plant CARE (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/)
was used to predict cis-elements in SPS promoters.

To generate a phylogenetic tree, the predicted protein
sequences from seven plants, including two Saccharum
species (S. officinarum and S. spontaneum), Zea mays,
Sorghum bicolor, Arabidopsis thaliana, Brachypodium
distachyon, Vitis vinifera, Ananas comosus, Oryza sativa
and Amborella trichopoda were initially aligned based
on Clustal W2.0 [48]. Then we reconstructed the phylo-
genetic tree of SPS genes by the Neighbor-Joining
method estimated by the JTT amino acid matrix imple-
mented using the program MEGA 4.0 [49]. The pairwise
deletion option was set in the NJ tree reconstruction
and the accuracy of the tree topology was assessed by
bootstrap analysis with 1000 resampling replicates.

Genes of SPSA, SPSB, SPSC and SPSD were initially
aligned using Clustal W2.0 [48]. The aligned sequences
were subject to KaKs_Calculator [50] to calculate the Ka
and Ks values.
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Expression analysis using RNA-seq data

For two blocks of expression profile, the first batch of
samples were from different tissues at three different de-
velopmental stages (seedling, pre-mature stage and ma-
ture stage), including 2 leaves (mature leaf and leaf roll)
and 3 stalks (mature, maturing and immature stalk). In
additional, the second batch of samples were segments
of the gradient developmental leaf, which was divided
into 15 clips in four zones: a basal zone (base, sink tis-
sue), a transitional zone (going through the sink-source
transition), a maturing zone and a mature zone (active
C, photosynthetic zones, fully differentiated).

Paired-end sequencing (100bp reads length) was per-
formed using the HiSeq 2500 platform. The raw data was
obtained from a list of RNA-seq libraries and initially fil-
tered using Trimommatic [51] with default parameters.
Then Tophat program was performed to map clean reads
to assemble BAC contigs and the FPKM values for each
SPS gene were calculated using cufflinks [52].

Metabolomics experiments

Leaves in seedling and stems in the mature stage were
sampled from two species, LA-Purple (S. officinarum),
SES 208 (S. spontaneum), respectively. For the leaf sam-
ples, we selected three segments during different devel-
opmental stages, 0-2 segments (basal zone), 7-9
segments (maturing zone) and 13-15 segments (mature
zone). For stem samples, the internodes selected were
the same as in the experiments involving RNA-seq, three
zones (basal zone, maturing zone, mature zone), stem 3,
6, 9 in S. spontaneum and stem 3,9,15 in S. officinarum.
Samples were harvested and ground with a ball mill pre-
cooled with liquid nitrogen, brought back to extract and
derivatize the metabolites. Chromatographic analyses of
derivatized samples were achievedusing a random injec-
tion sequence, on an Agilent 7890B GC (Agilent, At-
lanta, GA, USA), coupled to a Pegasus HT time-of-flight
mass spectrometer (LECO, St. Joseph, MI, USA),
equipped with a Gerstel MultiPurpose Sampler (MPS)
(Gerstel, Miilheim an der Ruhr, Germany). Five experi-
mental replicates of each tissue were tested. Raw data
was processed using ChromaTOF (version 4.51.6, LECO,
St. Joseph, MI, USA) to identify the metabolites. Signal
redundancy per metabolite was manually corrected and
based on the normalized mean area of selected ions,
quantitative measurements of analytes were performed
after normalization using the IS. Next, by matching the
mass spectra with those of authentic standards, public
and commercial databases (NIST, Fiehn and Golm me-
tabolome databases), the metabolites were identified.
Chemical standards were purchased from Sigma (St.
Louis, MO, USA) or Fluka (Milwaukee, WI, USA). For
comparing the abundances of metabolites, the data
matrix consisting of mass features and peak area values
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were exported from ChromaTOF to Excel. The mean
peak area abundance values from five technical repli-
cates were calculated after normalization to IS [53].

Proteomics experiments

To investigate the proteomic changes among two sugar-
cane species, the leave and stem samples analyzed were
of the same stage as those used for the metabolomics ex-
periments. To prepare the protein, one gram of fresh tis-
sues was collected and the experimental method was
referred to the FASP procedure [54] and the manufac-
turer’s instructions (Thermo Fisher Scientific) following
the TMT labeling procedure. We then prepared the
sample to be fractionated by the strong cation exchange
(SCX) chromatography as previously described [55]. On
a nanoflow HPLC (Proxeon Biosystems, now Thermo
Fisher Scientific), we performed RP-HPLC separation.
The resolution for MS/MS spectra was set to 17,500 at
m/z 200 and the normalized collision energy was 29%.
Reporter ion quantitation was based on the extraction of
the TMT reporter ion signals of each peptide by Max-
Quant software. The contents of proteins with the value
of peak area were then quantified by summing reporter
ion counts across all peptide matches, and then normal-
ized by assuming equal protein loading across all
samples.
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