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Abstract

spacer (ITS) sequences phylogenetic analyses.

Background: The genus Ligusticum consists of approximately 60 species distributed in the Northern Hemisphere. It
is one of the most taxonomically difficult taxa within Apiaceae, largely due to the varied morphological
characteristics. To investigate the plastome evolution and phylogenetic relationships of Ligusticum, we determined
the complete plastome sequences of eight Ligusticum species using a de novo assembly approach.

Results: Through a comprehensive comparative analysis, we found that the eight plastomes were similar in terms
of repeat sequence, SSR, codon usage, and RNA editing site. However, compared with the other seven species, L.
delavayi exhibited striking differences in genome size, gene number, IR/SC borders, and sequence identity. Most of
the genes remained under the purifying selection, whereas four genes showed relaxed selection, namely ccsA, rpoA,
ycfl1, and ycf2. Non-monophyly of Ligusticum species was inferred from the plastomes and internal transcribed

Conclusion: The plastome tree and ITS tree produced incongruent tree topologies, which may be attributed to the
hybridization and incomplete lineage sorting. Our study highlighted the advantage of plastome with mass
informative sites in resolving phylogenetic relationships. Moreover, combined with the previous studies, we
considered that the current taxonomy system of Ligusticum needs to be improved and revised. In summary, our
study provides new insights into the plastome evolution, phylogeny, and taxonomy of Ligusticum species.
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Background
The genus Ligusticum, belonging to the family Apiaceae
with approximately 60 species, is distributed throughout
Asia, Europe, and North America [1]. It has two distri-
bution centers: one in the Himalayas, and the other in
North America [2]. There are 40 species (35 endemics)
of this genus in China, most of which are restricted to
alpine regions [1].

Ligusticum is one of the most taxonomically difficult
genera within Apiaceae, largely due to the varied
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morphological characteristics of flowers, leaves, bracte-
oles, and mericarps that make it difficult to distinguish
from its neighbors [1, 3, 4]. So far, its phylogenetic rela-
tionships with nearby genera are not clear, such as
Ligusticopsis, Tilingia, Cnidium, Selinum, Hymenidium,
Pachypleurum, Rupiphila, and Paraligusticum [1], espe-
cially, merging Tilingia and Ligusticopsis into Ligusticum
is still debatable [2]. The diagnostic characters of Tilin-
gia are the distinct calyx teeth and the mericarp bearing
a vitta in each furrow [5], which do not distinguish it
from Ligusticum. Thus, Tilingia was transferred into
Ligusticum [6, 7]. Leute [3] separated Ligusticopsis from
Ligusticum based on the prominent calyx teeth. This
treatment is not supported, for some Ligusticum species

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-020-02696-7&domain=pdf
http://orcid.org/0000-0003-2064-0112
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:xjhe@scu.edu.cn

Ren et al. BMC Plant Biology (2020) 20:519

also have this characteristic [2]. Traditional methods to
distinguish these species are based on their morpho-
logical characteristics, while many above-mentioned spe-
cies always exhibit similar characteristics leading to
extremely difficult species classification and generic de-
limitation [1, 3, 4]. Previously, a few molecular markers
have been used to study the phylogeny of Ligusticum,
such as nuclear ribosomal DNA internal transcribed spa-
cer (ITS), plastid DNA rpli6, rpsi6, and rpoCl intron
[4, 8—14], yet the DNA fragments fail to recognize Ligus-
ticum as a monophyletic group. Among which, Downie
et al. [12] identified five clades within Ligusticum, in-
cluding Acronema Clade, Conioselinum chinense Clade,
Pyramidoptereae, Selineae, and Sinodielsia Clade. Zhou
et al. [4] subsequently divided the genus Ligusticum into
six clades, and East-Asia (Physospermopsis) Clade was
added. It can be seen that the genus Ligusticum is facing
a big challenge of taxonomy and phylogeny. Therefore,
more genomic resources are needed for reconstructing
phylogenetic relationships and re-evaluating the generic
limits of Ligusticum.

Additionally, many Ligusticum species are precious
traditional herbs with excellent medicinal values. For ex-
ample, the rhizomes and roots of L. jeholense or L.
sinense are used as the traditional Chinese medicine
named Gao-ben, which has been widely used to treat
colds, headaches, trapped wind, and rheumatic arthralgia
[15]. As a result, this herb has been conducted many
studies on bioactive, chemical components, or pharma-
cology [16, 17]. Despite excellent medicinal value, gen-
omic resources are lacking and species authentication is
difficult. Thus, it is necessary to develop more DNA bar-
codes by a comparative plastome method for species au-
thentication to assure medicinal quality.

Plastid is a key organelle for green plants, which par-
ticipates in the photosynthetic process and provides es-
sential energy for plants [18]. The plastid genome
(plastome) is a double-stranded molecule of 115 to 165
kb in most plants [19]. Structural organization, gene ar-
rangement, and gene content of plastome are relatively
conserved. Typical plastome contains a large single copy
(LSC) region of 82-90 kb, a small single copy (SSC) re-
gion of 15-20 kb, and two inverted repeats (IRs) regions
of 22-25kb [19]. It always encodes 110-130 distinct
genes, including protein-coding gene(~ 80), transfer
RNA (tRNA) gene (~30), and ribosomal RNA (rRNA)
gene (4) [20]. Moreover, it is usually uniparental inherit-
ance and has low nucleotide substitution rates [21]. For
these reasons, the plastome has become useful a tool for
plant phylogenetic studies at different taxonomic levels
[22-25]. Currently, the plastid phylogenomics analysis of
Ligusticum has not been reported. Meanwhile, the on-
going development of next-generation sequencing and
bioinformatics technology makes it cheaper and faster to
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obtain the complete plastome sequence than ever before.
Therefore, we prefer to use the plastomes to infer the
phylogenetic relationships for Ligusticum.

Here, we newly sequenced eight plastomes of Ligusti-
cum species. To obtain a comprehensive understanding
of phylogenetic relationships, we also used nuclear ITS
sequences to construct the phylogenetic tree. Our aims
were to (1) infer the plastome evolution of Ligusticum;
(2) provide more genomic resources for developing can-
didate DNA barcodes; (3) test if the plastomes increase
resolution than traditional DNA markers; and (4) serve
as a reference for subsequent phylogenomics studies of
this genus. Overall, the complete plastomes reported
here will promote plastome evolution, phylogeny, and
taxonomy studies of Ligusticum.

Results

Characteristics of Ligusticum plastomes

After quality control, 5.76 Gb (L. scapiforme) to 7.47 Gb
(L. delavayi) clean reads were generated for the eight
Ligusticum species (Table 1), then we obtained eight
complete plastome sequences by a de novo assembly.
The determined complete plastome sequences of the
eight Ligusticum species ranged from 146,443 bp in L.
pteridophyllum to 155,623 bp in L. delavayi (Table 1).
All of them were highly conserved in structure com-
pared to most angiosperms, sharing the typical quadri-
partite structure with two copies of IR regions (18,166—
26,908 bp), SSC regions (16,741-17,591 bp), and LSC re-
gions (85,066—93,363 bp). The overall GC content was
between 37.3-37.6%, while the IR regions were higher
(42.5-44.8%) than that of the LSC (35.7-36.0%) and SSC
(30.9-31.2%) regions (Table 1). The eight plastomes
contained about 129-133 genes, including 85-88
protein-coding genes, 36-37 tRNA genes, and eight
rRNA genes (Fig. 1, Table 1, Additional file 2: Table S1). L.
delavayi contained four more genes (ycf2, rpl23, rpl2, and
trnl-CAU) than seven other Ligusticum species in IRa (Fig.
1, Additional file 2: Table S1). The rpsi2 gene was trans-
spliced with the 5end and the duplicated 3'end were lo-
cated in the LSC and IR regions, respectively (Fig. 1). The
trnK-UUU had the longest intron (2485-2543 bp) contain-
ing the matK gene (Fig. 1). The GC content of four rRNA
(rrnl6, rrn23, rrn4.5, and rrn5) genes was high (55.1-
55.3%) (Fig. 1).

Codon usage and RNA editing sites

The total sequence sizes of the protein-coding genes for
codon analysis were 67,905-68,268 bp in the eight Ligus-
ticum plastomes. These protein sequences encoded 22,
635-22,756 codons, which are summarized in
Additional file 3: Table S2. Leu was encoded by the
highest number of codons (2382-2419), whereas Cys was
the least (232—241). The RSCU values of all codons in
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Table 1 Characteristics of the eight Ligusticum plastomes
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L. capillaceum L. delavayi L. hispidum L. involucratum L. likiangense L. pteridophyllum L. scapiforme

L. thomsonii

Raw reads (G) 6.17 752 6.5 7.24
Clean reads (G) 6.13 747 644 7.14
Mean coverage 294x 4334x 1695x 1626%
GenBank numbers MT409612 MT409613  MT409614  MT409615
Plastome size (bp) 147,808 155,623 147,797 147,752
LSC (bp) 91,907 85,066 91,846 91,782
IRs (bp) 19,199 26,908 19,162 19,205
SSC (bp) 17,503 16,741 17,627 17,560
Total GC content (%) 37.5% 37.6% 373% 374%
LSC (%) 36.0% 35.7% 35.9% 35.9%
IR (%) 44.1% 42.5% 44.1% 44.0%
SSC (%) 31.0% 31.0% 30.9% 30.9%
Total gene numbers 129 133 129 129
Protein-coding 85(5) 88 (8) 85(5) 85(5)
tRNA 36 (6) 37 (7) 36 (6) 36 (6)
rRNA 8 (4) 8 (4) 84 8(4)

587 7.21 583 6.09
581 7.0 5.76 6.04
1197x 1549x 352 2590
MT409616 MT409617 MT409618 MT409619
148,196 146,443 148,107 147,462
92,305 92,598 92,214 93,363
19,158 18,166 19,156 18,254
17,575 17,513 17,581 17,591
37.5% 37.5% 37.5% 37.6%
35.9% 35.9% 36.0% 36.0%
44.1% 44.8% 44.1% 44.8%
31.0% 31.2% 31.0% 31.1%
129 129 129 129
85(5) 85(5) 85(5) 85(5)
36 (6) 36 (6) 36 (6) 36 (6)
8 (4) 8 (4) 8 (4) 8 (4)

the form of a heatmap are shown in Fig. 2. The red
values indicate higher RSCU values and the blue values
indicate lower RSCU values. The heatmap showed that
about half of the codons were used more frequently.
Specifically, 30 codons were used frequently with RSCU
> 1, and all biased codons ended with a purine (A/T) ex-
cept TTG (Fig. 2, Additional file 3: Table S2). The mean
values of GC content of the first, second, and third
codon positions were 46.0, 38.3, and 29.7%, respectively
(Additional file 4: Table S3). This GC content also im-
plied that the plastome of Ligusticum has a strong bias
towards A/T at the third codon position. The usage of
two codons (ATG and TGG) had no bias (RSCU =1)
(Additional file 3: Table S2).

Additionally, potential RNA editing sites were identi-
fied for 35 genes of the eight Ligusticum plastomes. A
total of 469 RNA editing sites were identified, in which
the number of editing sites ranged from 55 (L. delavayi)
to 67 (L. likiangense) (Additional file 5: Table S4). The
ndhB gene had the highest number of RNA editing sites
(10) in all of the eight Ligusticumm plastomes, whereas
the rps8 gene also had 10 RNA editing sites in L. likian-
gense. All of the identified RNA editing sites were Cyto-
sine to Uracil (C-U) conversion and most of them were
situated in the second codon position (40-51), followed
by the first codon position (12-16), but no sites situated
in the third codon position (Additional file 1: Figure S1).
The amino acid conversion Serine to Leucine (S-L) oc-
curred most frequently. Furthermore, a mass of RNA
editing sites (420) caused amino acid changes for hydro-
phobic products, such as Leucine (L; 219), Phenylalanine

(F; 63), Isoleucine (I; 58), Tyrosine (Y; 25), Methionine
(M; 21), Tryptophan (W; 17), and Valine (V; 17)
(Additional file 5: Table S4).

Repeat element analysis

Forward, palindromic, reverse, and complementary re-
peats were detected in the eight Ligusticum plastomes.
In all, we detected 308 repeats with 30-82 bp long (Add-
itional file 6: Table S5). The number of forward repeats
(176) was higher than that of palindromic repeats (116),
reverse repeats (10), and palindromic repeats (6). L.
likiangense contained the most repeats (49), while L.
thomsonii contained the least (25) (Fig. 3). According to
the length, we artificially divided the repeats into four
categories: 30-45bp, 45-60bp, 60-75bp, and >75bp
(Fig. 3). Among them, most of the repeats (85%) were
30-45 bp long. The majority of the repeats were located
in intergenic or intron regions (70.5%), and a minority
were located in gene regions (29.5%). 603 simple se-
quence repeats (SSRs) were detected, but the number of
SSRs  differed among eight Ligusticumm species
(Additional file 1: Figure S2, Additional file 7: Table S6).
L. scapiforme contained the most SSRs (82), while L.
delavayi and L. hispidum contained the least (68). The
most abundant were mononucleotide repeats (54.9%),
followed by dinucleotides (25.5%), tetranucleotides
(12.3%), trinucleotides (3.0%), and pentanucleotides
(3.0%). Hexanucleotides are very rare across the plas-
tomes. SSRs were distributed mainly in the LSC
(68.3%), with less in the IRs (16.6%) and SSC (15.1%)
(Additional file 7: Table S6).
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Comparisons of border and sequence identity

The differences between inverted repeat and single-copy
(IR/SC) borders among eight Ligusticum plastomes were
examined (Fig. 4). Besides L. delavayi, seven other Ligus-
ticum species were conserved in terms of the gene order
and gene content at the IR/SC borders. For L. delavayi,
the LSC/IRb border was rps19/rpl2 genes and the IRa/
LSC border was rpl2/trnH genes. For the other Ligusti-
cum species, LSC/IRb borders extended 576—701 bp into
the ycf2 gene. The SSC/IRb borders extended 3—140 bp
into the ycfl genes, where the smallest and largest exten-
sions occurred in L. thomsonii (3bp) and L. involucra-
tum (140bp). The ndhF gene in L. capillaceum
overlapped with the SSC/IRb border by 59 bp. The ycfI
genes, crossing the SSC/IRa borders, were located at the
SSC and IRa regions with 3514—3574 bp and 1886-2057
bp. The trnL and trnH genes were 1033-1871 bp and 6—
881 bp away from the IRa/LSC borders.

The mVISTA program was used to conduct a se-
quence identity analysis using L. delavayi as a reference.
The results are revealed in Fig. 5, of which coding re-
gions showed more sequence conservation than non-
coding regions. 766 SNPs and 351 Indels were detected
among the eight Ligusticum plastomes (Additional file 8:
Table S7). The majority of SNPs and Indels (786)
were from non-coding regions, while a minority (331)
were from coding regions. We also identified the average
percentage of variation for 149 regions (66 coding re-
gions, 64 intergenic spacers, and 19 introns) (Fig. 6,
Additional file 9: Table S8). Among these regions, the
average percentage of variation for non-coding regions
(18.5%) was higher than that (3.2%) for coding regions
(Additional file 9: Table S8). Twelve non-coding regions
exhibited high variation: truH-GUG/psbA, psbA/trnK-
uuu, trnK-UUU/rpsl6, rpsl6/trnQ-UUG, psbK/psbl,
atpF/atpH, trnE-UUC/trnT-GGU, accD/psal, ycfd/cemA,
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tomes. The pairwise genetic distance ranged from 0.0010
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(Additional file 10: Table S9). However, the values of
pairwise genetic distance between L. delavayi and seven
other Ligusticum species were higher: 0.0234 (L. capilla-
ceum), 0.0236 (L. scapiforme), 0.0234 (L. likiangense),
0.0237 (L. hispidum), 0.0239 (L. involucratum), 0.0221
(L. pteridophyllum), and 0.0232 (L. thomsonii). Figure 6
shows that the sequence difference of seven other Ligus-
ticum species was lower without L. delavayi. In a word,
our results demonstrated that L. delavayi showed a
higher sequence difference than the rest seven Ligusti-
cum species (Fig. 6, Additional file 10: Table S9).

Selective pressure in plastid genes

The dN/dS ratios of the 79 common protein-coding genes
were calculated to estimate selective pressures (Add-
itional file 11: Table S10). The dN/dS ratios of the most
genes in our results were less than 0.5, suggested that they
were under the purifying selection. Despite this, we also
detected an increase in dN/dS, indicating relaxed selection
in nine genes (0.5 < dN/dS < 1.0). Unexpectedly, none but
four genes were significant (P < 0.05) after the likelihood
ratio test (LRT). Therefore, the analyses presented here

demonstrated that four genes were under relaxed selec-
tion, namely ccsA, rpoA, ycfl, and ycf2 (Additional file 11:
Table S10). Meanwhile, only one gene with dN/dS >1.0
(psa)), but the LRT was not significant (P > 0.05).

Phylogenetic relationships

39 complete plastomes and 80 nuclear ITS sequences
were used to carry out the phylogenetic analyses
(Additional file 12: Table S11). The plastome tree and ITS
tree produced incongruent tree topologies, while they all
inferred the non-monophyly of Ligusticum species (Fig. 7,
Additional file 1: Figure S3). In the plastome tree, the L.
capillaceum, L. scapiforme, L. likiangense, L. hispidum, L.
involucratum, and L. thomsonii belonged to Selineae.
However, five other Ligusticum species formed a clade, L.
thomsonii clustered with S. divaricata, L. seseloides, and P.
praeruptorum. L. tenuissimum and L. sinense belonged to
Sinodielsia Clade, but they did not form a clade. L. sinense
was more closely related to C. officinale, then they
clustered with L. tenuissimum. L. delavayi always
clustered with P. neurophyllum, belonged to Acronrma
Clade. L. pteridophyllum belonged to Sinodielsia Clade
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[4], while it was resolved as sister to Sinodielsia Clade +
Selineae. In the ITS tree, the L. capillaceum, L. scapiforme,
L. likiangense, L. hispidum, L. involucratum, and L. thom-
sonii formed a clade and belonged to Selineae. L. tenuissi-
mum was resolved as sister to Selineae with weak support
(BS =54%, PP =0.8). L. sinense was still more closely re-
lated to C. officinale. The systematic position of L. dela-
vayi was in line with the plastome tree. The ITS tree
topologies resulting from ML and BI analysis were some
different. For example, L. pteridophyllum clustered with L.
sinense and C. officinale by Bl analysis (PP = 0.57), whereas
it was the parallel branch’s relationships with L. sinense
and C. officinale by ML analysis (BB =57%). In Selineae,
six Ligusticum and seven Angelica falled within this tribe.
Like Ligusticum, Angelica also showed polyphyly, and M.
pimpinelloideumn and G. littoralis embedded in it. Cha-
maesium Clade was the basal taxa of the Apioideae rather
than Bupleureae. Sinodielsia Clade was not a monophy-
letic group in our phylogenetic analyses.

Discussion

Plastome evolution

The plastomes are highly conserved in genome
structure, gene order, and gene content [19, 21, 26].
Nevertheless, genome rearrangement, gene loss (pseudo-
genization or deletion), differences in structure and size,
expansions and contractions of IR have been confirmed
to occur many times during plastome evolution [20, 27—
30]. In this study, the Ligusticum plastomes were low
conservation, exhibiting striking differences in terms of
genome size (146,443-155,623 bp), gene number (129—
133), and IR/SC borders. L. delavayi had the longest
plastome length, whereas its LSC and SSC regions were
shorter than that of seven other Ligusticum species. The
differences in length reflect the extensions of IRs and
the contractions of two SCs. It had four more genes
(yef2, rpl23, rpl2, and trnl-CAU) than seven other Ligus-
ticum species in IRa, which was likely ascribed to the
gene duplication resulting from the extensions of IRs.
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The varied gene number in the congeneric species has
been found in other angiosperm plastomes [31, 32]. For
L. delavayi, the IRa/LSC border was rpl2/trnH genes
and the LSC/IRb border was rpsI9/rpl2 genes, which
were different from seven other Ligusticum species
(trnL/trnH and ycf2). The IRa region extended into the
ycfl gene was a common feature in plastome evolution
[31, 33, 34]. The IR regions had a higher GC content of
42.5-44.8% possibly caused by the high GC content of
four rRNA genes [34].

SSRs have been used widely in plant population genetics
and evolutionary studies [35, 36]. The most abundant SSRs
were mononucleotide in the eight Ligusticumm plastomes,
followed by dinucleotide, tetranucleotide, trinucleotide,
pentanucleotide, and hexanucleotide repeats. This
phenomenon has been reported in Primula [31] and Al-
lium [37]. The most probable explanation for the largest
amount of SSRs in the LSC is that LSC is longer than SSC
and IRs. The majority of the SSRs contained A/T motifs,
causing the AT richness of the overall plastome [34]. The
cpSSRs reported here are informative sources for develop-
ing molecular markers for genetic diversity studies of Ligus-
ticum species.

Codons with a higher AT content are usually used in
plastomes, and the trend is more striking for A/T use in
the third codon positions [38]. The bias also showed in
the eight Ligusticum plastomes. Leucine was encoded by
the highest number of codons, and the order of codon
preference was TTA > CTT > TTG > CTA > CTC > CTG,
which following most Geraniaceae species [20]. RNA
editing is an important process to regulate the gene ex-
pression of posttranscriptional in plant organelles [39].
The events occur in all major lineages of land plants, ex-
cept Marchantia polymorpha and some green algae [40].
RNA editing can correct DNA mutations at the RNA
level, thus recovers conserved amino acid residues to
maintain functions of encoded proteins [41-43]. Most of
the editing sites occurred at the second codon position
and no sites occurred at the third codon position, the
distribution pattern was also found in Forsythia suspensa
[44]. Like many other plants, the ndhB gene had the
most RNA editing sites [40, 45], which suggests that
ndhB gene is critical in regulating plant physiological
and biochemical processes.

Large repeat sequences are considered to be the major
cause to promote plastome rearrangement and sequence
divergence [46-48]. Among the identified 308 repeats,
short repeat with 30—-45bp (85.4%) was the most, which
was consistent with many unrearranged plastomes [49, 50].
Moreover, non-coding regions distributed more SNPs and
Indels and had a higher average percentage of variation
than that of coding regions. Consequently, our study
showed that non-coding regions were less conservative
than coding regions. The distribution of repeats is
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correlated with mutational events, and repeats may play a
role in inducing mutations [30, 51, 52]. Our results also in-
dicated that the distribution of repeats was relevant to mu-
tational events, for repeats located predominantly in highly
variable non-coding regions (70.5%) instead of coding re-
gions (29.5%). DNA barcodes are defined as the short DNA
sequences with adequate variations to identify species in
the given taxonomic group [53]. Eight coding regions and
12 non-coding regions with the highest percentage of vari-
ation have been described. Thereinto, several regions have
been ascertained in other angiosperms, such as matK,
ndhF, rps3, ycf2, ycfl x 2, rpoA, trnH-GUG/psbA, ndhE/
rpl32, trnK-UUU/rps16, psbK/psbl, ycfd/cemA, accD/psal,
yef2/trnL-CAA, rpsl6/trnQ-UUG, and trnE-UUC/trnT-
GGU [22, 49, 50, 54—56]. For the herbal medicinal genus
Ligusticum, these regions could serve as candidate DNA
barcodes for species authentication to assure medicinal
quality.

We estimated the selective pressures of 79 common
protein-coding genes in Ligusticum plastomes. Most of
them were under purifying selection, which reflected the
typically evolutionary conservation of plastid genes in
plants [57, 58]. Four genes (ycfl, ycf2, ccsA, and rpoA)
were under relaxed selection. The ycfl and ycf2 genes,
the largest and the second-largest genes in the plastome,
have been proved to be absent or pseudogenized in
many prior works [21, 59]. Relaxed selection on the two
genes also has been observed in Corallorhiza striata,
Lennoa madreporoides, and Pholisma arenarium [60,
61]. The genes rpoA and ccsA encode an o subunit of
RNA polymerase and a protein required for heme at-
tachment to C-type cytochrome, respectively [62, 63].
They usually present in land plants, whereas they are ab-
sent from the plastome of Physcomitrella patens [63].
Nevertheless, the plastomes of parasitic plants generally
are the best model systems to study the effect of relaxed
selection on photosynthetic function [64, 65]. Indeed,
some parasitic plants harbor drastically reduced plas-
tome size and gene content resulting from the relaxed
selection on photosynthesis-related genes [60, 64, 66].
Therefore, further studies are necessary to investigate
the important role of relaxed selection in Ligusticum
plastid genes. Overall, these findings shed new lights on
the plastid genes of Ligusticum species.

Phylogenetic relationships

Until now, molecular phylogenetic studies based on a few
molecular markers do not support the monophyly of
Ligusticum species [4, 8—14]. Here, we performed phylo-
genetic analyses for Ligusticum using complete plastomes
and ITS sequences. Unfortunately, we still failed to
recognize Ligusticum as a monophyletic group. The plas-
tome tree and ITS tree produced incongruent tree topolo-
gies. L. capillaceum, L. scapiforme, L. likiangense, L.
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hispidum, and L. involucratum share some similar mor-
phological characteristics (e.g., bracteole pinnate and stem
bases clothed in fibrous remnant sheaths), and they
formed a clade (BS =100%, PP =1) in the plastome tree.
However, L. thomsonii clustered with the above five spe-
cies to form a clade in the ITS tree. L. tenuissimum
belonged to Sinodielsia Clade in the plastome tree, which
in accord with the results of Zhou et al. [4], whereas it was
resolved as sister to Selineae with weak support in the ITS
tree (BS =54%, PP = 0.8). The incongruence between nu-
clear and plastome phylogenies has been commonly ob-
served in other plant lineages [67—69]. This incongruence
was likely the result of different inherited background and
mutation rates of ITS and plastid DNA [70, 71]. The nu-
clear ITS is biparentally inherited and has a higher muta-
tion rate, whereas the plastid DNA is maternally inherited
and has a lower mutation rate [70, 71]. Moreover, the
hybridization and incomplete lineage sorting (ILS) may be
responsible for the inconsistent relationships between
ITS- and plastome-based phylogenies [72, 73]. L. sinense
was more closely related to C. officinale, which can be
possibly explained well using the cross-hybridization of
genomes [74]. L. pteridophyllum clustered with L. sinense
and C. officinale in ITS tree by BI analysis, which was con-
sistent with the results of Zhou et al. [4]. These together
suggested that Ligusticum species may have experienced a
complex evolutionary history. The polyphyly of Angelica,
as well as Glehnia and Melanosciadium embedded in it,
have been documented by earlier studies [12, 14, 75]. Sino-
dielsia Clade was not recovered as a monophyletic that
has been observed in other work [14]. Chamaesium Clade
was the basal taxa of the Apioideae as a recent study based
on 3351 single-copy genes [76].

The plastome tree obtained moderate-to-high support,
conversely the ITS tree obtained lower support and
more parallel branches. Therefore, our results highlight
the advantage of plastome with mass informative sites in
resolving phylogenetic relationships. This study is also
the first to support the polyphyly of Ligusticum based on
plastomes. Further studies that include greater taxon
sampling are necessary to confirm the polyphyletic pos-
ition of the Ligusticum. Moreover, combined with the
previous studies [4], we considered that the current tax-
onomy system of Ligusticum needs to be improved and
revised. In a word, our study provided useful informa-
tion for future phylogeny, taxonomy, and evolutionary
history studies of the Ligusticum species.

Methods

Taxa sampling and DNA extraction

Fresh green leaves from adult plants of eight species
were sampled from the field, and then immediately dried
with silica gel for the next step. Permission is not re-
quired to sample these plants because they are not key
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protected plants. Total genomic DNA was extracted
from silica-dried leaves with a modified CTAB protocol
[77]. The formal identification of the plant material was
undertaken by Xingjin He (Sichuan University). Voucher
specimens were deposited at the herbarium of Sichuan
University (Chengdu, China) (Additional file 13: Table
S12). For ITS analyses, we newly sequenced 17 ITS have
been submitted into NCBI (accession numbers:
MT974009-MT974025) (Additional file 12: Table S11).

Genome sequencing, assembly, and annotation

The raw reads of the eight newly sequenced species were
generated from an Illumina HiSeq X Ten platform
(paired-end, 150 bp) at Novogene (Tianjin, China). Quality
control of the raw reads was performed using fastP ver-
sion v0.15.0 (-n 10 and -q 15) [78], yielding at least 5GB
clean reads for each species. Then clean reads were used
to perform a de novo assembly by NOVOPlasty v2.6.2
[79] with the default parameters. The seed sequence is the
rbcL gene from the reference genome sequence of L.
tenuissimum (NC_029394). The program DOGMA [80]
was used to annotate the genes of the eight plastomes,
and adjusted manually in Geneious v9.0.2 (Biomatters
Ltd., Auckland, New Zealand) based on comparisons with
its congeneric species. All of the eight newly generated
complete plastomes were available in NCBI (accession
numbers: MT409612-MT409619) (Table 1). The circle
plastome map was drawn using the online program Orga-
nellarGenomeDRAW (OGDRAW) [81].

Codons, RNA editing sites, and repeat sequences

The protein-coding genes were extracted from the eight
Ligusticum plastomes for codon analysis. All overlapping
genes were removed, and the final dataset included 80
protein-coding genes for each species. Codon usage and
relative synonymous codon usage (RSCU) [82] values
were calculated using the CodonW v1.4.2 program [83].
The heatmap from all RSCU of the eight plastomes was
produced using TBtools [84]. The base compositions for
protein-coding genes were calculated by MEGA6 [85].
The online program Predictive RNA Editor for Plants
suite [86] with a cutoff value of 0.8 was used to predict
the potential RNA editing sites.

The online REPuter program [87] was used to identify
repeat sequences, including forward, palindromic, reverse,
and complementary repeats. According to the following
parameters: (1) a repeat size of more than 30 bp; (2) more
than 90% sequence identity between the two repeats; and
(3) Hamming distance=3. All overlapping repeat
sequences were removed. The Perl script MISA (http://
pgrc.ipk-gatersleben.de/misa/) was used to exploit simple
sequence repeats (SSRs). The minimum number of SSRs
was set to 10, 5, 4, 3, 3, and 3, for mono-, di-, tri-, tetra-,
penta-, and hexanucleotides, respectively.
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Sequence divergence

The whole-genome alignment of the eight Ligusticum
plastomes was generated and visualized using the
mVISTA [88] using L. dilavayi as a reference. Eight
Ligusticum plastomes were aligned in Geneious v9.0.2
(Biomatters Ltd., Auckland, New Zealand) with MAFFT
v7.221 [89], subsequently, Indels and SNPs were counted
and positioned using the “Find Variations/SNPs”. The
percentages of variable characters for coding and non-
coding regions were calculated based on the method of
Zhang et al. [90]. The genetic distance of the eight Ligus-
ticum plastomes was calculated using MEGAG6 [85].

Selective pressure analysis

Selective pressures were analyzed for common 79
protein-coding genes among ten Ligusticum species (in-
cluding 2 published plastomes). The ratio (w) of non-
synonymous to synonymous nucleotide substitution
rates (dN/dS) was calculated using the Codeml program
in PAML4.9 with the site-specific model (seqtype =1,
model =0, NSsites =0, 1, 2, 3, 7, 8) [91, 92]. The codon
frequencies were determined by the F3 x4 model. We
compared three sets: MO vs M3, M1 vs M2, and M7 vs
M8 to detect selected sites. The likelihood ratio test
(LRT) was used to confirm the quality of the three sets.
Bayes Empirical Bayes (BEB) analysis was used to statis-
tically identify selected sites with posterior probabilities
>95%. We classified genes as evolving under positive se-
lection (dN/dS > 1.0), relaxed selection (0.5 < dN/dS <
1.0), and purifying selection (dN/dS < 0.5) [61, 93].

Phylogenetic analysis

Earlier molecular systematic studies identified five clades
within Ligusticum, including Acronema Clade, Conioseli-
num chinense Clade, Pyramidoptereae, Selineae, and
Sinodielsia Clade [12]. More recently, the genus Ligusti-
cum has been divided into six clades, and East-Asia
(Physospermopsis) Clade was added [4]. Here, we used
39 complete plastomes and 80 nuclear ITS sequences to
infer the phylogenetic relationships of Ligusticum. Se-
quence alignment was achieved using the MAFFT
v7.221 [89]. The aligned sequence was then manually ex-
amined and corrected. Maximum likelihood (ML) and
Bayesian inference (BI) methods were used to infer
phylogenetic relationships. RAXML v8.2.8 [94] was used
to perform the ML analysis with 1000 replicates and
GTRGAMMA model as suggested (see RAXML manual).
MrBayes v3.2.7 [95] was used to perform the Bayesian
inference with the best substitution model was deter-
mined by Modeltest v3.7 [96]. The selected models for
complete plastomes and ITS sequences in BI analyses
were TVM + 1+ G and GTR +1 + G, respectively. Markov
chain Monte Carlo (MCMC) algorithm was run for two
million generations, with one tree sampled every 100
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generations. The MCMC convergence was determined
by calculating the average standard deviation of split fre-
quencies (ASDSF), which fell below 0.01. The first 25%
of the trees were discarded as burn-in and the consensus
tree generated using the remaining trees. The ITS trees
were visualized and edited using Interactive Tree of Life
(iTOL) [97]: nodes under 50% bootstrap support were
collapsed.

Conclusions

In this study, we determined the complete plastome se-
quences of eight Ligusticum species using a de novo as-
sembly approach. Through a comprehensive comparative
analysis, we observed that compared with the other seven
species, L. delavayi exhibited striking differences in gen-
ome size, gene number, IR/SC borders, and sequence
identity. We performed the phylogenetic analyses for
Ligusticum using 39 complete plastomes and 80 nuclear
ITS sequences and found that Ligusticum was not mono-
phyletic as presented in previous studies. The
hybridization and incomplete lineage sorting may be re-
sponsible for the inconsistent relationships between ITS-
and plastome-based phylogenies. The phylogenetic ana-
lyses highlighted the advantage of using plastome with
mass informative sites in resolving phylogenetic relation-
ships. Our study enriches the data on the plastomes of
Ligusticum and serves as a reference for subsequent phylo-
genomics studies of this genus.
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