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Abstract

Background: Transcription factors GATAs are involved in plant developmental processes and respond to
environmental stresses through binding DNA regulatory regions to regulate their downstream genes. However,
little information on the GATA genes in Brassica napus is available. The release of the reference genome of B. napus
provides a good opportunity to perform a genome-wide characterization of GATA family genes in rapeseed.

Results: In this study, 96 GATA genes randomly distributing on 19 chromosomes were identified in B. napus, which
were classified into four subfamilies based on phylogenetic analysis and their domain structures. The amino acids of
BnGATAs were obvious divergence among four subfamilies in terms of their GATA domains, structures and motif
compositions. Gene duplication and synteny between the genomes of B. napus and A. thaliana were also analyzed
to provide insights into evolutionary characteristics. Moreover, BnGATAs showed different expression patterns in
various tissues and under diverse abiotic stresses. Single nucleotide polymorphisms (SNPs) distributions of BnGATAs
in a core collection germplasm are probably associated with functional disparity under environmental stress
condition in different genotypes of B. napus.

Conclusion: The present study was investigated genomic structures, evolution features, expression patterns and
SNP distributions of 96 BnGATAs. The results enrich our understanding of the GATA genes in rapeseed.
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Background
Transcription factors (TFs) regulate gene expression by
recognizing and combining cis-acting elements on the
promoter regions of target genes [1]. TFs play key roles
in plant developmental processes, hormones signaling
pathways and disease resistance responses. There are
several well-known transcription factor families includ-
ing WRKY, MYB (V-myb avian myeloblastosis viral
oncogene homolog), DREB (Dehydration-responsive
element-binding protein), bZIP (Basic region-leucine zip-
per), MADS-box and GATA (GATA-binding factor) in

plants. Among them, the GATA genes are characterized
as important regulators for many biological processes,
such as flower development, carbon and nitrogen metab-
olisms [2]. The GATA genes could recognize and bind
to the (T/A)GATA(A/G) sequences to regulate the tran-
scription levels of their downstream genes [3, 4]. The
DNA binding domains of the GATA proteins contain a
type IV zinc finger structure C-X2-C-X17–20-C-X2-C and
a conserved basic follow region, and most of them fea-
tured with C-X2-C-X18-C-X2-C or C-X2-C-X20-C-X2-C
zinc finger domains [2, 3, 5, 6]. Generally, the GATA
family genes could be divided into four subfamilies as
subfamily I, II, III and IV in Arabidopsis thaliana based
on the phylogenetic relationships, DNA binding domains
and intron-exon structures [2, 5, 7–9].
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Many studies have been proved that the GATA TFs
are responsible for plant growth development, flowering,
chlorophyll synthesis, greening and senescence. For in-
stance, the loss-of-function and the over-expression of
the GATA genes such as GNC (GATA, Nitrate-
inducible, Carbon-metabolism) and GNL (GNC-like) can
change flowering time and chlorophyll synthesis in A.
thaliana [10–13]. GNC regulates downstream genes
such as the light-labile factors PIFs (phytochrome inter-
acting factors) to control chloroplast biogenesis and sto-
matal index [10, 13]. The cross-repressive interactions
between GNC/GNL and MADS-box transcription factor
SOC1 (Suppressor of Overexpression of Constans1) affect
flowering time [12, 13]. Besides, GNC and GNL are con-
siderable repressors of gibberellin signaling through be-
ing regulated by DELLA and PIF regulators [10, 14].
Moreover, auxin response factors ARF2 and ARF7 can
repress the expression of GNC and GNL genes [10–12,
14]. In Brassica napus, a GATA member BnA5.ZML1
was reported to be a stigma compatibility factor [15].
PdGNC in Populus plays a crucial role in photosynthesis
and plant growth [16]. In wheat, over-expression of
TaZIM-A1, a member of the GATA family, caused the
delay of flowering and the decrease of thousand-kernel
weight [17].
The GATA TFs also respond to diverse abiotic stresses

in plants. Under cold stress, the expression levels of
GNC and GNL were significantly increased, while the
seedling survival ratio was elevated in the over-
expression lines with GNC or GNL genes in A. thaliana
[18]. Moreover, under low temperature, GATA9 gene
showed remarkably changed expression to activate its
downstream genes in Vigna subterranea [19]. Under sal-
inity stress, OsGATA8 overexpressed lines showed
higher biomass accumulation and photosynthetic effi-
ciency than the wild-type and the knockdown seedlings
of rice [20]. In soybean seedlings, the expression of
GATA44 and GATA58 genes were extremely down-
regulated under low nitrogen settlement [21]. In B. jun-
cea, 29 GATA genes responded to high temperature and
drought treatments by their transcription levels based on
the RNA-seq experiments [22].
Rapeseed is an important oil crop. To date, the ge-

nomes of Darmor-bzh (winter ecotype), Tapitor (winter
ecotype), Zhongshuang 11 were successfully sequenced
and assembled [23–25]. Recently, we re-sequenced 991
accessions from the global rapeseed germplasm and
established a worldwide core collection [26, 27]. In this
study, 96 GATA genes were identified and characterized
in the genome of B. napus. Moreover, the expression
pattern and SNPs distribution of these genes were ana-
lyzed. The main objectives of the present study are to (i)
investigate the difference of gene/protein sequences and
genetic structures of BnGATAs; (ii) determine the gene

expression patterns in tissues and under abiotic stresses;
and (iii) identify SNPs of BnGATAs in a worldwide core
collection. These results enrich our knowledge about
BnGATA genes, providing a basis of molecular charac-
teristics and facilitating breeding marker-assisted breed-
ing in rapeseed.

Methods
Identification of GATAs in B. napus
The amino acid sequences of the GATA family members
in A. thaliana were obtained according to a previous
study (Table S1, [2]), and the homologs of GATAs in B.
napus were blasted against the reference genome of the
rapeseed cultivar “Darmor-bzh” (v4.1 genome, http://
www.genoscope.cns.fr/brassicanapus/data/). Hidden
Markov Model (HMM) and BLASTP programs were ap-
plied for the identification of BnGATA proteins. The
HMMER profile of GATA zinc finger domain (PF00320)
from the Pfam database (http://pfam.janelia.org/) was
used to perform the local BLASTP (E-value-20) search.
The candidate sequences of GATAs were confirmed in
the SMART database (http://smart.embl-heidelberg.de/)
[28], the NCBI Conserved Domain database (http://
www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) [29] and
the Pfam database [30]. Subfamily members were named
based on their arrangement order on chromosomes of
the B. napus genome (Table S2). Moreover, the length
of amino acids, molecular weights (MW) and isoelectric
point (pI) of GATA proteins were calculated using tools
from ExPASy (http://www.expasy.ch/tools/pi_tool.html).

Phylogenetic analysis and classification of GATAs
The multiple alignments of GATA amino acids were
done using the ClustalW with default parameters [31]. A
phylogenetic tree was constructed using the MEGA 7.0
by the Neighbor-Joining (NJ) method [31, 32], with the
following parameters: poisson model, pairwise deletion
and 1000 bootstrap replications. Unrooted NJ tree of
GATA proteins from A. thaliana and B. napus was also
constructed using the MEGA 7.0. The GATA family
members from A. thaliana were referred to classify the
GATA family members in B. napus. In addition, the con-
served GATA zinc finger domains in proteins were iden-
tified using the MEGA 7.0 and the GeneDoc software.

Motifs and gene structures
The Gene Structure Display Server online program
(GSDS: http://gsds.cbi.pku.edu.ch) was used to analyzed
exon-intron structures of all GATA genes [33]. To iden-
tify conserved motifs in GATA proteins, the Multiple
Expectation Maximization for Motif Elicitation (MEME)
online program (http://meme.sdsc.edu/meme/itro.html)
was performed with the following parameters: number
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of repetition = any, maximum number of motifs = 10;
and optimum motif length = 6 to 100 residues [34].

Chromosomal localization and gene duplication analyses
The distribution of 96 GATA genes identified in B. napus
was mapped to 19 chromosomes according to their phys-
ical location information from the reference genome data-
base (http://www.genoscope.cns.fr/brassicanapus/data/),
and was visualized using the Circos software [35]. To iden-
tify gene duplication, the GATA genes were aligned using
BLASTP with the e-value of 1e-10 and MCScanX to classify
the duplication patterns including segmental and tandem
duplication [36]. The tandem duplication was defined that
a chromosomal region within 300 kb contains two or more
genes [37]. Furthermore, the synteny relationships
of GATA genes between the genomes of B. napus
and A. thaliana were constructed according to Zhu
et al. [38].

Expression patterns of BnGATA genes in B. napus
To understand expression patterns of the BnGATA
genes in B. napus, transcriptome data from 12 tissues of
the B. napus cultivar “Zhongshuang 11” which was re-
leased in 2017 [25] were obtained from the NCBI (ID:
PRJNA394926). We calculated and used the average ex-
pression level of three biological replicates of each tissue
to show their expression patterns. Moreover, transcrip-
tome data with three biological replicates of B. napus
under dehydration, salt, ABA and cold stress conditions
were obtained by referring to Zhang et al. [7, 9]. The
fold changes (ratios to the control) of gene expression
lower than 0.5 or higher than 2.0 were considered as dif-
ferentially expressed genes (DEGs). These transcriptome
data were available under the project ID: CRA001775
(https://bigd.big.ac.cn/). Expression standardization of
GATAs was performed using the DSEeq2 R package and
the heatmaps and the cluster analysis of GATAs were
constructed using the TBtools software [39].

SNP distribution of GATAs in a core collection of B. napus
To reveal natural variation of genomic sequences of GATA
genes in B. napus, SNPs in the coding regions of GATA
genes were determined in a worldwide collection of B.
napus germplasm of 300 accessions in light of the genome
re-sequencing data of our previous studies [26, 27]. High-
quality SNPs with MAF larger than 5% and missing rate
less than 50% were used for the further analysis.

Results
Identification and phylogenetic analysis of GATA proteins
in B. napus
A total of 96 proteins with GATA zinc finger domain
were identified to be the GATA family members in B.
napus (Table S2). The longest sequence of each protein

was remained, and the information of these proteins was
listed in Table S2 and Table S3. The length of 96 GATA
proteins was ranged from 101 to 576 amino acids (aa),
and the molecular weight was ranged from 11.17 to
64.59 kDa.
To analyze the relationships of GATA proteins be-

tween B. napus and A. thaliana, an unrooted tree was
constructed using the full-length amino acids of these
GATAs. Totally, 30 proteins from A. thaliana and 96
proteins from B .napus were identified (Fig. 1). In A.
thaliana, the GATAs were clustered into four subfam-
ilies [2]. Here, 96 GATAs in B. napus were correspond-
ingly classified into four subfamilies (Fig. 1). Among
these GATA proteins, 36 members belong to the sub-
family I, 43 to the subfamily II, 10 to subfamily III and 7
to the subfamily IV. Each BnGATA protein features with
only one GATA domain. Notably, the GATA domain lo-
cates mainly in the position 160–230 aa for the subfam-
ily I; 30–150 or 200–260 aa for the subfamily II; 190–
330 aa for the subfamily III, and 7–40 aa for the subfam-
ily IV, respectively (Table S2).

Gene structures and protein motifs of BnGATAs
As shown in Fig. 2b, one to nine exons were determined
in BnGATA genes. Similar to GATA genes in A. thali-
ana, BnGATA genes in the subfamilies I and II have 2 to
3 exons except for BnGATA1.6 (4 exons), 3 to 9 exons
for the subfamily III, and 6 to 8 exons for the subfamily
IV (Fig. 2b).
The motif analysis was conducted to display schematic

structures of GATA proteins (Fig. 2c). The details of 10
kinds of conserved motifs were listed in Supplementary
Table S4. The motif 1 and motif 2 were detected in all
GATA proteins, the motif 3, 4 and 9 were mainly identi-
fied in the members of subfamily I, the motif 6, 8 and 10
were identified in the members of subfamily II, while the
motif 5 and 7 were identified in the members of subfam-
ily III. Except for the motif 1 and 2, no other motifs were
found in the subfamily IV (Fig. 2c). In short, similar gene
structures and conserved motifs within a subfamily
strongly support the results of subfamily classifications
by the phylogenetic analysis.
Moreover, with similar result of GATA domain ana-

lysis found in A. thaliana [2], BnGATAs in the subfam-
ilies I, II and IV contained 18 residues in the zinc finger
loop (C-X2-C-X18-C-X2-C), with the exception of
BnGATA2.8 and BnGATA2.26, where N-X2-C-X18-C-
X2-C appears instead of C-X2-C-X18-C-X2-C) (Fig. 3).
All 10 BnGATAs in the subfamily III contained 20 resi-
dues between the second and the third Cys residues in
the zinc finger (C-X2-C-X20-C-X2-C). In addition, sev-
eral amino acid sites showed high conservation in the
GATA domains such as LCNACG residues (Fig. 3).
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The distribution, genomic synteny and gene duplication
of BnGATA genes
Totally, 84 out of 96 BnGATA genes were distributed
over 19 chromosomes, while other 12 genes were
assigned into random fragments (6 on the AAnn sub-
genome and 6 on the CCnn subgenome) (Fig. 4 and
Table S2). Among 84 BnGATAs, 46 genes located on
the AA subgenome, including 16 subfamily I genes,
22 subfamily II genes, 5 subfamily III genes and 3
subfamily IV genes; while 50 genes located on the CC
subgenome, including 20 subfamily I genes, 21 sub-
family II genes, 5 subfamily III genes and 4 subfamily
IV genes (Fig. 4). Some BnGATA genes were formed
as clusters in the same chromosomes, such as
BnGATA1.32 and BnGATA2.36 (Fig. 4). However,
most BnGATA genes were randomly distributed on
the AA or CC subgenome. In addition, Chr A1
showed the highest density of BnGATAs with 7 genes
from the subfamilies II and III (Fig. 4).

Using BLAST and MCScanX methods, 82 segmental
duplication events of the GATAs were identified (Fig. 4
and Table S5). Among these events, 80 duplication
events occurred across chromosomes, while 2 events
were detected within a chromosome (BnGATA1.28/
BnGATA1.31, BnGATA1.19/BnGATA1.21). Further-
more, 14 duplication events took place on the AA sub-
genome, 14 events on the CC subgenome, and 50 events
across AA/CC subgenomes. The results suggest that
some BnGATA genes possibly came into being during
gene duplication, and the segmental duplication events
could play key roles in the expansion of BnGATA genes
in B. napus.
To better understand the evolution of BnGATA genes,

the synteny of the GATA gene pairs between the ge-
nomes of B. napus and A. thaliana was constructed
(Fig. 5 and Table S6). Here, 55 BnGATAs exhibited syn-
tenic relationship with AtGATAs. Some AtGATAs were
associated with more than one orthologous copies in B.

Fig. 1 Phylogenetic analysis of GATA proteins in B. napus and A. thaliana. The different-colored arcs indicate subfamilies of the GATA proteins.
The unrooted Neighbour-Joining phylogenetic tree was constructed using MEGA7 with full-length amino acid sequences of 126 GATA proteins,
and the bootstrap test replicate was set as 1000 times. The asterisks and triangles represent the GATA proteins from B. napus and A. thaliana, respectively
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napus. For example, AT2G45050 showed syntenic rela-
tionship with BnGATA1.7, BnGATA1.8, BnGATA1.19
and BnGATA1.21 (Table S6). Moreover, collinear gene
pairs of GATA genes fixed on highly conserved syntenic
blocks were also detected (Fig. 5 and Table S6).

Expression profiles of BnGATAs in different tissues
The expression profiles of 96 BnGATA genes in 12 tis-
sues of the rapeseed cultivar ZS11 were compared (Fig. 6
and Table S7). According to the difference of their ex-
pression pattern, these genes were clustered into three
groups. In details, a total of 39 genes were classified into
the group 1 showing low expression levels or not de-
tected in the tissues examined. 12 BnGATAs were be-
longing to the group 2 with high expression levels in
these tissues. Meanwhile, 43 BnGATAs were included in
the group 3 showing preferential expression profiles
across tissues. For instance, BnGATA1.11 was not
expressed in wilting pistil, expressed with low levels in

blossomy pistil and root, but expressed highly in other
tissues (Fig. 6 and Table S7).
On the other hand, the group 1 contained 9, 28, 1 and

1 genes from the four subfamilies; the group 2 had 6
and 6 genes from the subfamilies I and III, while the
group 3 contained 21, 13, 3 and 6 genes from the four
subfamilies, respectively (Table S7). Interestingly, it was
found that BnGATAs from the subfamily II showed low
expression levels in all tissues, but the subfamily III
members had high expression levels in all tissues (Fig. 6
and Table S7). The expression patterns of GATA genes
in different tissues suggested functional divergences be-
tween different subfamilies.

Expression profiles of BnGATAs in response to abiotic
stresses
Further, we studied the expression pattern of BnGATA
genes under various abiotic stresses including drought,
salinity, ABA induction and cold stresses (Fig. 7 and
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Fig. 2 Schematic representation of phylogenetic relationships, gene structures and conserved motifs of the GATA genes in B. napus. a
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Table S8). In detail, most genes of the subfamily III
members were remarkably up-regulated, while most of
the subfamily IV genes were down-regulated in response
to dehydration and salt treatments. BnGATA1.27,
BnGATA2.23 and BnGATA3.1 were up-regulated, but
BnGATA1.8 was not expressed after salt treatment.
Under dehydration stress, BnGATA1.9, BnGATA1.27
and BnGATA2.23 showed the largest increase in expres-
sion levels, while BnGATA1.11 and BnGATA2.5 were
significantly decreased. BnGATA1.27 and BnGATA2.33
showed higher expression level under ABA induction,
while BnGATA2.5 was down-expressed. Under cold
stress, BnGATA1.23 and BnGATA1.29 were significantly
up-regulated, while BnGATA1.11 and BnGATA1.24 were
remarkably down-regulated. Notably, BnGATA1.27 was
significantly induced by all abiotic stresses (Fig. 7). Be-
sides, BnGATA1.9, BnGATA1.29 and BnGATA2.5 could
respond to diverse abiotic treatments (Fig. 7, Table S8).
The results of the expression profiles of BnGATA genes
under diverse abiotic treatments may suggest their func-
tional differences among four subfamilies.

Sequence variation of BnGATAs in a core collection of B.
napus
Based on our previous re-sequencing data of 991 world-
wide accessions of rapeseed [26, 27], the SNPs from 300
core accessions with MAF more than 5% were used for
the analysis. In average, 6 SNPs were detected for a
GATA gene (Table S9). It was found that the SNP dens-
ity of BnGATAs on the AA subgenome was higher than
that on the CC subgenome (Table S9). Meanwhile, the
SNP density of each subfamily was different, with aver-
agely 6.7, 3.58, 14.2 and 7.14 SNPs for the four subfam-
ilies, respectively.
The SNP density of each BnGATA gene within a sub-

family was also different. For instance, no SNP was iden-
tified for BnGATA1.27, while 8 and 10 SNPs were
identified for BnGATA1.29 and BnGATA2.5. Moreover,
a detailed SNP distribution of BnGATA1.29 and
BnGATA2.5 were shown in Fig. 8. For BnGATA1.29, it
was found that there were 6 SNP loci in the promoter
region, 2 SNPs in the exon/intron region and no SNP in
the 3’UTR region (Fig. 8a). For BnGATA2.5, there were
no SNP in the promoter region, 10 SNPs in the exon/in-
tron region and no SNP in the 3’UTR region (Fig. 8b).
We speculate that sequence variation of these GATAs
may be related to their expression difference under abi-
otic stresses.

Discussion
In this study, we identified 96 genes of GATA family
transcription factors in B. napus, designating as
BnGATA1.1 to BnGATA4.7 based on their subfamily
classification. Bioinformatics analyses such as

Subfam
ily I

Subfa m
i ly  II

S ubfam
ily III

Sub fam
ily IV

Fig. 3 Alignments of GATA domain sequences of the GATA family
members in B. napus. Highly conserved amino acid positions are
marked with letters and triangles at the bottom
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phylogenetic relationships, domains, gene structures,
protein motifs, chromosomal locations, homologous and
orthologous genes of GATA were performed. The results
indicate that BnGATAs clustered into four subfamilies
are significantly different with genetic structures and ex-
pression patterns, and which are more complex than the
GATA TFs in A. thaliana. Furthermore, the information
on gene transcription level and SNP distribution pro-
vides a resource for functional identification of BnGA-
TAs. The results provide a valuable resource for
functional identification of BnGATA TFs and molecular
breeding in B. napus.
In previous studies, the GATA family genes were system-

atically investigated in A. thaliana and O. sativa [2, 40], So-
lanum lycopersicum [5], Vitis vinifera [8], Phyllostachys
edulis [6] and Gossypium genues [7, 9]. According to these
studies, the GATA genes from dicotyledons, but not from
monocots, could be strictly divided into four subfamilies. In
our study, we also find that the subfamilies I, II and III of
the GATA genes simultaneously occur in both dicotyledons
and monocots, but the subfamily IV genes did not exist in
monocots [2, 6]. It demonstrated that the subfamily IV of

GATA genes appeared after the divergence between dicoty-
ledon and monocot. Therefore, we speculate that the
GATA subfamily IV genes may play unique functions in di-
cotyledonous plants, but further evidence is needed.
Significant differences in gene and protein structures

among BnGATA subfamilies may lead to functional di-
vergences. For example, in subfamily III, the GATA do-
main featured with 20 residues in the zinc finger (C-X2-
C-X20-C-X2-C), while there were 18 residues in the
other three subfamilies. The CCT and TIFY domains
were specifically found in the subfamily III, which were
reported to be involved in flowering, hypocotyl and root
development in A. thaliana [41–43]. The subfamily I
genes may be involved in plant growth and respond to
abiotic stresses. In A. thaliana, BME3 (ortholog of
BnGATA1.29) was reported as a positive regulator for
seed germination [44]. The BME3 knockout plants
showed deeper dormancy and more sensitive to cold
stress than the wild-type plants. Moreover, the decreased
expression of GA20-oxidase and GA3-oxidase in the
knockout plants suggested that BME3 was involved in
GA biosynthesis [44]. In this study, BnGATA1.29
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(BnaC08g25560D) exhibited high expression levels in
various tissues and significantly responded to ABA and
cold stresses (Table S7 and Table S8). A recent study re-
ported that RGL2-DOF6 complex regulates GATA12
(from the subfamily I) gene to enforce primary dor-
mancy in A. thaliana [45]. The subfamily II of BnGATAs
is involved in plant flowering and abiotic stress respond-
ing. In A. thaliana, GNC and GNL (ortholog of
BnGATA2.5) were involved in germination, greening,

flowering, floral development, senescence and floral
organ abscission [10–12, 46–49]. Recently, the associ-
ation between BnGATA2.5 gene expression and plant
height, branch initiation height and flowering time was
detected in B. napus [50]. In this study, BnGATA2.5
(BnaA02g08490D) was expressed across many tissues
and organs in B. napus (Fig. 6, Table S7). Moreover, the
expression of BnGATA2.5 was down-regulated under
ABA inducement, drought and cold treatments,
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indicating its strong response to abiotic stresses (Fig. 7,
Table S8). The subfamily III of GATA TFs is a novel
plant-specific subfamily, which plays important roles in
flowering, hypocotyl and root development [41–43]. For
instance, overexpression of ZIM (GATA25) could up-
regulate the expression of XTH33 (xyloglucosyl transfer-
ase 33), resulting in elongate hypocotyls and prtioles in
A. thaliana [42, 43]. Besides, ZML1 (GATA24) and
ZML2 (GATA28) were identified as the two essential
components of the cry1 (Cryptochrome1)-mediated
photoprotective response in A. thaliana [51]. In this
study, BnGATA3.1 (BnaA01g25320D) as the ortholog of
AtZML1, was highly expressed in most tissues in B.
napus (Fig. 6, Table S7). The expression of BnGATA3.1
was slightly changed in response to a variety of abiotic
stresses (Fig. 7, Table S8). However, so far, little was
known about the subfamily IV of the GATA TFs in
plants.
In this study, we found that BnGATA genes had a

plentiful genetic variation of SNPs in a core collection of
B. napus. SNPs in the coding regions are crucial for the
generation of new alleles, and allele divergence may lead
to gene function alterations, which is vital facilitation for
crop species adaptation to environmental stresses [52].
For example, 7 functional alleles of powdery mildew re-
sistance gene Pm3 were isolated from a set of 1320
bread wheat landraces through allele mining, while the
other 9 alleles of Pm3 showed non-function to powdery
mildew resistance [53]. In our core collections of rape-
seed, the SNP density of the subfamily III genes (5.7
SNPs per 1 kb) was averagely higher than that in the
other subfamily genes (3.5) (Table S9), while the subfam-
ily III genes were highly expressed in various tissues and
under dehydration condition (Table S7 and Table S8).
Therefore, haplotypes and allele-specific markers of
BnGATA genes could be identified for rapeseed
molecular-breeding programs in future works. Rapeseed
originated from the natural crossing between B. rapa
(AA) and B. oleracea (CC) [24]. In this study, we identi-
fied 46 and 50 BnGATA genes located on the AA or CC

subgenomes. However, the SNP density of BnGATAs on
the AA subgenome (4.7 per 1 kb) was much higher than
that on the CC subgenome (3.2) (Table S9), which could
be explained by more frequent outcrossing between B.
napus and B. rapa than between B. napus and B. olera-
cea [26].
Taken together, we performed a comprehensive

characterization of GATA family genes in B. napus. The
results enrich our knowledge about BnGATA genes, pro-
viding a basis for manipulation of the genes and facilitat-
ing breeding marker-assisted breeding in rapeseed.
However, functional validation is needed to reveal the
exact functional roles of BnGATA genes.

Conclusion
In the present study, genome-wide identification and
characterization of GATA genes were conducted in B.
napus. A total of 96 GATA genes are identified in the
rapeseed genome, which were divided into four subfam-
ilies. Phylogenetic and synteny analysis of GATA genes
between A. thaliana and B. napus provide valuable clues
for the evolutionary characteristics of the BnGATA
genes. Moreover, gene expression and SNP distribution
analysis of BnGATA genes were also determined. These
results provide insights into the functional differences,
evolutionary relationships and expression profiles of
GATA transcription factors in B. napus.
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