
RESEARCH ARTICLE Open Access

Tight association of genome
rearrangements with gene expression in
conifer plastomes
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Abstract

Background: Our understanding of plastid transcriptomes is limited to a few model plants whose plastid genomes
(plastomes) have a highly conserved gene order. Consequently, little is known about how gene expression changes
in response to genomic rearrangements in plastids. This is particularly important in the highly rearranged conifer
plastomes.

Results: We sequenced and reported the plastomes and plastid transcriptomes of six conifer species, representing
all six extant families. Strand-specific RNAseq data show a nearly full transcription of both plastomic strands and
detect C-to-U RNA-editing sites at both sense and antisense transcripts. We demonstrate that the expression of
plastid coding genes is strongly functionally dependent among conifer species. However, the strength of this
association declines as the number of plastomic rearrangements increases. This finding indicates that plastomic
rearrangement influences gene expression.

Conclusions: Our data provide the first line of evidence that plastomic rearrangements not only complicate the
plastomic architecture but also drive the dynamics of plastid transcriptomes in conifers.
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Background
Conifers are a group of cone-bearing seed plants. They
comprise ca. 630 species in two clades, Pinaceae (coni-
fers I clade) and cupressophytes (conifers II clade, con-
sisting of five families). Conifers dominate temperate
forests, especially in the Northern hemisphere, and sig-
nificantly contribute to photosynthesis and biomass pro-
duction. They provide shelters for wildlife and important
resources for humans, such as solid wood fuel, valuable
timber, edible seeds, and essential oils [1].
Plastid gene transcription is a complex process, involv-

ing both prokaryotic- and eukaryotic-type systems [2].
Most plastid genes are presumably transcribed as poly-
cistronic mRNAs which then undergo various post-

transcriptional modifications [3]. These processes gener-
ate tremendously elaborate transcriptomes with an un-
precedented diversity of non-coding RNAs [4], multiple
loci for transcriptional initiation and termination [5, 6],
a full or nearly full transcription of the genome [7, 8],
and varying frequencies of RNA-editing sites [9].
Plastid genomes (plastomes) of land plants are highly

conserved in their gene content and order. Functionally
related genes are commonly found in clusters and are
likely co-transcribed as operons [10]. These operons
may be conserved due to selective constraints rather
than slow rates of neutral chromosomal rearrangements
[11]. However, mounting evidence indicates that many
taxa, including conifers (the largest group of gymno-
sperms), have highly rearranged plastomes [12–14].
Some of these rearrangements resulted in disruption of
canonical operons and creation of novel co-transcriptional
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units. An example is the disruption of rps2 operons in
Sciadopitys and Callitris [15, 16]. We have long been puz-
zled by these findings because it is then unclear whether
plastomic rearrangements affect plastid gene transcription.
If they do, what are the underlying mechanisms and con-
sequences of such changes?
In this study, we sequenced both plastomic DNA and

RNA from one representative genus in each of the six
extant conifer families. Strand-specific RNA libraries
have the advantage of allowing for the discrimination of
sense and antisense transcripts [17]. We took advantage
of this to (1) investigate the full transcription capability
of both plastomic strands, (2) estimate the relative num-
ber of plastid coding and antisense transcripts, and (3)
identify plastid C-to-U RNA-editing sites separately at
sense and antisense transcripts in conifers. We also
compared plastid gene expression levels among conifers
and demonstrated a strong association between gene
expression and plastomic rearrangements. We discuss
possible mechanisms underlying this association.

Results
Both plastomic strands are fully transcribed in conifers
The six newly assembled plastomes are illustrated as lin-
ear molecules to facilitate pairwise comparisons (Fig. 1a).
A plastomic inversion was detected in the sampled K.
davidiana individual when it was compared to the
conspecific reference (NC_011930; Fig. S1a). This
polymorphic inversion is flanked by Pinaceae Type I
repeats [18], which are capable of triggering homolo-
gous recombination to generate predominant and
substoichiometric plastomic isomers in K. davidiana
(Fig. S1b).
RNAseq coverage across the six sampled conifer plas-

tomes is represented as histograms in Fig. 1. RNAseq
coverage of rRNAs is low, indicating effective depletion
of rRNA transcripts prior to sequencing. We also found
that over 94.2% of the plastome sequences were covered
by RNAs generated from a specific single DNA strand.
The coverage ratio increased to over 99.9% after RNAseq
reads from both strands were combined (Fig. S2). Over-
all, our data reveal almost full transcription of both plas-
tomic strands, indicating that intergenic, intronic, and
antisense transcripts are ubiquitous in conifer plastids.
Our data also show that CDS sense transcripts are gen-

erally more abundant than their antisense counterparts,
although there are several exceptions (Fig. S3). For ex-
ample, psbN, a photosynthetic system II gene, is located
on the strand opposite to the psbB operon, a well-known
polycistronic transcription unit that comprises four genes:
psbB, psbH, petB, and petD [19]. Therefore, the transcripts
antisense to psbN are likely overrepresented due to the
strongly expressed psbB operon.

Influence of plastomic rearrangements on CDS expression
Among the six conifer plastomes, 31 syntenic blocks
were identified to estimate plastomic rearrangements
(Fig. S4a). Pairwise dot-plot analyses of these six plas-
tomes are also shown in Fig. S4b. Our comparisons
reveal 2–14 rearrangements among the sampled conifers
(Fig. 2). To examine whether the phylogenetic distances
are associated with the frequency of plastomic rear-
rangements, we estimated interspecific genetic distances
based on the branches of the tree inferred from the
concatenation of 83 orthologous CDSs (Fig. 2). We did
not find significant correlation between genetic dis-
tances and plastomic rearrangement counts (Pearson’s
ρ = 0.375, P = 0.167; Fig. S5).
To normalize expression levels, RNAseq reads mapped to

CDSs were collected and combined to calculate transcripts
per million (TPM). Figure 3 compares the TPM scores be-
tween orthologous plastid CDSs that retain equivalent func-
tions across conifer species. We found that (1) psbA and
rbcL are the two most highly expressed genes in the pres-
ence of light and (2) TPM scores of these orthologous
genes are significantly correlated (Pearson’s ρ = 0.733 to
0.914, all P < 0.001), suggesting that their expression levels
are strongly functionally dependent. However, these correl-
ation coefficients are inversely associated with the number
of plastomic rearrangements (PR) between species
(Pearson’s ρ = − 0.626, P = 0.013; Fig. S6). Taken together,
our results demonstrate that plastomic rearrangements re-
duce the strength of functionally-dependent association of
plastid gene expression. In other words, these rearrange-
ments influence gene expression in conifers.

Plastid RNA editing occurs in both sense and antisense
transcripts
We detected 78 C-to-U RNA-editing sites in K.
davidiana plastids, 42 in A. dammara, 23 in N. nagi,
35 in S. verticillata, 32 in Ce. wilsoniana, and 21 in
Cu. konishii (Fig. 4a; Table S1). Notably, the majority
(76.2–96.9%) of these edited sites cause non-silent
editing, introducing non-synonymous changes in
amino acid sequences. In contrast, silent-editing sites
at synonymous codon positions occur in only 0–
14.3% of the sites. In addition, editing efficiency at
silent-editing sites is nearly always less than 50%, with
two exceptions: ndhE of A. dammara and psbA of S.
verticillata (Fig. 4b; Table S1). We also discovered
one to three editing sites in antisense transcripts of
CDSs from each conifer species. These sites are par-
tially edited, with efficiency less than 50% (Fig. 4b).
We further investigated the intersection among these

edited sites based on their alignments. In Fig. 4c, edited
sites are designated as “shared” when they appear at the
same alignment position in two or more species. Those
found only in a single species are designated as “specific”
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sites. Most silent and antisense edited sites are species-
specific. Only one site—located in the rps8 transcript—is
shared by all conifers, suggesting that it originated in the
common ancestor of all conifers more than 300 million
years ago [20]. In addition, K. davidiana plastids contain
more species-specific RNA-editing sites than any
other species we examined, with the proportion of
“specific” sites exceeding other conifers by more than

twofold (Fig. S7). This finding implies that Pinaceae
has evolved a distinctive set of plastid RNA-editing
sites after diverging from cupressophytes.

Discussion
We used strand-specific RNAseq data to explore plastid
transcriptomic profiles across all six conifer families.
Our data indicate that conifer plastomes transcribe

Fig. 1 Plastid transcriptomic profiles of the six sampled conifer species. (a) Plastomic maps with genes in outer and inner strands transcribed
clockwise and counterclockwise, respectively. Transcriptomic profiles where outer (b) and inner (c) histograms represent RNAseq coverage (read
counts per base) after transformation by the formula: Log10 (coverage + 1) / Log10 (maximum coverage + 1). (d) Distribution of RNA-editing sites
where red, blue, and grey lines denote anti-sense, silent, and non-silent editing, respectively. Shared edited sites are linked by lines
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nearly full sequences of both DNA strands, reinforcing
the viewpoint that full transcription of plastomic se-
quences is the norm rather than an exception among
seed plants [8]. We noted an excess of antisense over
sense transcripts in psbN located at the opposite strand
of the highly expressed psbB operon. This finding sug-
gests that the positions of plastid genes might affect anti-
sense RNA expression. In addition, we identified a
number of C-to-U edited sites in sense and antisense
transcripts. These results suggest that strand-specific
RNAseq improves the detection of RNA-editing sites by
not only removing antisense contamination during map-
ping but also allowing for the exploration of editing
events in antisense transcripts. Notably, all antisense
sites are edited inefficiently, implying that they are likely
accidental or tissue-specific [21–23].
We also discovered numerous RNAseq reads map-

ping onto introns, intergenic spacers (IGSs), and the
regions antisense to CDSs. Plastid non-coding RNAs
were proposed to regulate gene expression [24]. In
some model plants, plastid CDS and IGS transcripts
have similar expression levels [7]. We did not com-
pare transcript abundance between CDSs and IGSs
because the latter’s transcriptional orientation was un-
certain, making it difficult to identify the correspond-
ing RNAseq reads in a strand-specific manner.
Nonetheless, we did observe numerous transcripts
antisense to CDSs. In plastids, antisense transcripts
were hypothesized to bind to the 3′ end of mRNAs
and stabilize them [25]. This stabilization mechanism
is likely active for all CDS transcripts since their anti-
sense counterparts are prevalent in conifer plastids.

It has long been known that transcription termination
of most plastid genes is inefficient as it results in abun-
dant and diverse read-through transcripts that must be
post-transcriptionally processed [26]. In a recent study
[27], the mechanism of read-through transcription,
which affects the transcription of downstream genes,
resulted in extreme accumulation of accD transcripts
when transcription termination of the upstream gene,
rbcL, was inactivated. Here, we propose that read-
through transcription also helps interpret our finding
that plastomic rearrangements influence gene expres-
sion. Relocating a gene involves reconfiguring its neigh-
boring loci and thus altering the read-through
transcription effect from the upstream gene. This ultim-
ately changes the number of transcripts of the relocated
gene and its downstream neighbors. Moreover, we rule
out the possibility that phylogenetic effects contribute to
the association between gene expression and plastomic
rearrangements because the latter is not significantly
correlated with the genetic distances among sampled
conifers. The finding that plastomic rearrangements
might influence gene expression also makes caution
about determining insertion loci during transgenic
experiments on highly rearranged plastomes. However,
without environmental stress treatments, it is difficult to
link altered gene expression from plastomic rearrange-
ments with a biological adaption. Fortunately, inter- and
intra-specific plastomic inversions have been docu-
mented in several conifer lineages [this study [18, 28–
31]; providing ideal material to study the association be-
tween plastomic rearrangements and biological adapta-
tion in the future.

Fig. 2 Plastomic rearrangements taken place during the conifer evolution. A maximum likelihood tree inferred from the 83 orthologous CDSs is
depicted in the left panel. Families of sampled conifers are indicated in parentheses. Branch lengths used in calculating genetic distances are
labelled along the tree branches. Pairwise rearrangement counts (within green squares) and genetic distances (within red squares) are shown in
the right panel. BS, bootstrap support
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Methods
Plant materials, DNA and RNA extraction and sequencing
The six representative conifer species (i.e., Keteleeria
davidiana for Pinaceae, Agathis dammara for Araucar-
iaceae, Nageia nagi for Podocarpaceae, Sciadopitys verti-
cillata for Sciadopityaceae, Cephalotaxus wilsoniana for
Taxaceae, and Cunninghamia konishii for Cupressaceae)
were collected and identified by Dr. Chung-Shien Wu
(Biodiversity Research Center, Academia Sinica). Permis-
sion was not necessary for collecting these plants. The
voucher specimens were deposited at the Herbarium,
Biodiversity Research Center, Academia Sinica, Taipei
(HAST; Table S2).
For DNA and RNA extraction, approximately 30 cm of

fresh young shoots were collected from 10 to 30 years

old trees in April 2019. To reduce potential variability
due to different growth conditions, shoots were grown
hydroponically in a growth chamber (GC-550R, Yihder
Company, New Taipei City) at 25 °C with a light inten-
sity of 100 μmol m− 2 s− 1. After 24 h, fresh leaves on the
shoots were harvested for DNA and RNA extraction
using the methods described in [32, 33], respectively.
The extracted DNA was sequenced at Genomics BioSci
& Tech (New Taipei City, Taiwan) on an Illumina HiSeq
4000 system. We also performed strand-specific RNAseq
using the same system after DNase I (Invitrogen) treat-
ment, rRNA depletion (Illumina Ribo-Zero rRNA
Removal kits, Plant Leaf version), and library construc-
tion with dUTP and random hexamers. Table S2 details
the information on sampling locality, voucher numbers,

Fig. 3 Strong correlations among plastid CDS expression levels in the sampled conifer species. Kd, K. davidiana; Ad, A. dammara; Nn, N. nagi; Sv,
S. verticillata; Cw, Ce. wilsoniana; Ck, Cu. konishii; Rho (ρ), Pearson correlation coefficient; PR, numbers of plastomic rearrangements
between species
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GenBank accessions, and DNAseq and RNAseq read
counts used in this study.

Plastome assembly and RNA mapping analysis
Plastome assembly was initially conducted using SPAdes
3.13 [34] with the option of “careful” and a range of k-
mer sizes (21, 33, 55, 77, and 99). Plastomic contigs were
identified using NCBI-blast 2.2.18 [35] against in-house
databases. Gaps between contigs were closed using Gap-
Closer 1.12 [36]. This yielded complete plastomes for all
sampled conifers, except K. davidiana because of its
long Pinaceae Type I repeats [18]. We subsequently de-
signed specific primers (Fig. S1) to amplify the corre-
sponding regions and perform genome finishing in the
latter species.
For each conifer species, 20 million paired-end RNAseq

reads were randomly extracted and mapped to the corre-
sponding plastome using TopHat 2.1.1 [37] with the
parameters: library-type = fr-firststrand, read-mismatches
= 15, read-gap-length = 0, and read-edit-dist = 15.
Samtools 1.9 [38] was used to sort, filter, and combine the

mapped reads. The resulting BAM files were imported
into Geneious 11.1.5 (https://www.geneious.com) to cal-
culate read counts and conduct downstream analyses. The
RNAseq coverage, which refers to mapped read counts
per base, was calculated using 100-bp non-overlapping
sliding windows across plastomes, followed by transform-
ation with the formula: Log10 (coverage + 1) / Log10
(maximum coverage + 1).

Identification and visualization of RNA-editing sites
To identify C-to-U RNA-editing sites, the “Find Varia-
tions” option implemented in Geneious 11.1.5 was
employed with the threshold: minimum coverage = 50,
minimum variant frequency = 0.1, and maximum variant
P-value = 10− 6. Editing efficiencies were estimated by
calculating the ratio of edited to unedited bases in
mapped reads. Intersection among edited sites from the
six conifers were evaluated using UpSetR [39]. Plastome
maps, transcriptional profiles, and RNA-editing sites
were visualized using Circos 0.67 [40].

Fig. 4 Plastid RNA-editing sites detected in the six sampled conifers. (a) RNA-edited sites, and (b) their editing efficiencies. (c) UpSet plot
illustrating the intersections of these edited sites
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Phylogenetic tree construction
The 83 orthologous CDSs were manually extracted from
the six assembled plastomes (Table S3). Sequence align-
ments of these CDSs were performed using MUSCLE
3.5 [41] with the default setting. The phylogenetic tree
was constructed based on the concatenation of the 83
CDSs, a GTR + G + I model, and 1000 bootstrap repli-
cates using RAxML 8.2.10 [42].

Conclusion
It has long been known that plastomic rearrangements
occur frequently in conifers. However, gene expression dy-
namics in the relocated plastid gene (after rearrangements)
and its downstream neighbors has not been investigated. In
this pivotal study, we show that in conifers (1) both plas-
tomic strands are fully transcribed, (2) increased plastomic
arrangements reduce the strength of functionally-
dependent association of plastid gene expression, (3) RNA
editing occurs in both sense and antisense transcripts, and
(4) the Pinaceae have evolved a distinctive set of plastid
RNA-editing sites after diverging from cupressophytes. The
tight association of plastomic rearrangements with gene ex-
pression leads us to propose that read-through transcrip-
tion is likely the key to make this association. Additional
studies and molecular biology validation are needed to bet-
ter understand the biological adaptation of plastomic rear-
rangements in conifers.
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