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Abstract

Background: Despite significant limitations of growth medium reuse, a large amount of organic substrate is reused
in soilless cultivation of horticultural crops in China. Arbuscular mycorrhizal fungi (AMF) can promote nutrient
absorption and improve plant tolerance to biotic and abiotic stresses. However, the mechanisms governing the
effects of AMF on crop growth in organic continuous cropping substrates have not been elucidated.

Results: In this study, we showed that the inoculation of AMF in continuous cropping substrates promoted growth
and root development, and increased the root and NADP-malic enzyme (NADP-ME) activity of tomato seedlings. Root
transcriptome analysis demonstrated that the plant hormone signal transduction pathway was highly enriched, and
109 genes that positively correlated with the AMF-inoculated plant phenotype were obtained by gene set enrichment
analysis (GSEA), which identified 9 genes related to indole acetic acid (IAA). Importantly, the levels of endogenous IAA
in tomato seedlings significantly increased after AMF inoculation. Furthermore, the application of AMF significantly
increased the expression levels of NADP-MET and NADP-ME2, as well as the activity of NADP-ME, and enhanced the
root activity of tomato seedlings in comparison to that observed without inoculation of AMF. However, these effects
were blocked in plants treated with 2,3,5-triiodobenzoic acid (TIBA), a polar transport inhibitor of IAA.

Conclusions: These results suggest that IAA mediates the AMF-promoted tomato growth and expression of NADP-MEs
in continuous cropping substrates. The study provides convincing evidence for the reuse of continuous cropping
substrates by adding AMF as an amendment.
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Background

Soilless cultivation promotes crop growth and yield by
providing the most suitable environment for root growth
and development [1]. Due to the numerous advantages
of organic substrate cultivation, such as improved crop
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yield and quality, reduced pesticide, water and fertilizer
use, simple operation and management, reduced invest-
ment cost for equipment, avoidance of soil continuous
cropping obstacles, and suitability for green organic cul-
tivation, this type of soilless cultivation has been widely
practiced and currently accounts for over 75% of the
total area of soilless cultivation in China [2]. The annual
production and sales volume of organic substrates in
China is approximately 10 million m?. At the same time,
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the same volume of the substrates used is produced
every year. However, the physical and chemical proper-
ties of the used substrates deteriorate when reused,
resulting in larger bulk density and lower pH, which are
not conducive to crop growth and development [3].
Studies have shown that the numbers of beneficial fungi
decrease and those of harmful fungi increase in continu-
ous cropping substrates [4—6]. In addition, the effective
nutrient content, substrate enzyme activity, and root
index in the rhizosphere environment significantly de-
crease with the increase in continuous cropping years [4,
5]. However, it is imperative to improve and reuse sub-
strates to reduce the labor input and production costs.
At present, few methods have been used to improve
continuous cropping substrates, such as substrates disin-
fection and crop rotation [4, 6]. Interestingly, the inocu-
lation with beneficial microorganisms in the continuous
cropping soil has been demonstrated to be an effective
way to overcome continuous cropping obstacles [7].
However, the role of beneficial microorganisms in con-
tinuous cropping substrates is largely unknown.

Arbuscular mycorrhizal fungi (AMF) are ubiquitous
soil microorganisms and obligate symbionts that are im-
portant components of terrestrial ecosystems and can
form a mutually beneficial symbiosis with approximately
80% of vascular plant roots [8]. The glycoproteins pro-
duced by AMF hyphae can create a suitable rhizosphere
environment and better conditions for the growth of al-
most all vascular plants [9]. AMF symbiosis not only in-
creases the input of root carbon but also enhances
carbon fixation in soil by reducing the decomposition of
soil organic matter and the rhizosphere priming effect
[10]. AMF endow soil and roots with a direct connec-
tion, enhance plant mineral nutrition, water acquisition
and photosynthesis, and alleviate the adverse effects of
abiotic stresses, such as heavy metals and drought stress
[11-13]. Our previous study showed that AMF inocula-
tion on seedling substrates can reduce the harm of
saline-alkali land exerted on processing tomato [14]. In
addition, the application of AMF can effectively over-
come the continuous cropping obstacles in continuous
cropping soil, to promote growth and development of
many crops, such as pepper [15], soybean [16], and cu-
cumber [17]. However, the associated mechanism of
AMF-promoted growth in continuous cropping systems
has not been elucidated.

In this study, we investigated the effect and mechan-
ism of AMF on the cultivation of tomato in continuous
cropping organic substrates. The results showed that the
inoculation of AMF in the continuous cropping sub-
strates promoted the growth and increased the activity
of root and NADP-malic enzyme (NADP-ME), and the
level of indole acetic acid (IAA) in tomato seedlings.
However, these effects were compromised when plants
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were treated with IAA polar transport inhibitor, indicat-
ing that IAA played a critical role in AMF-promoted
plant growth. The results provide a theoretical and prac-
tical basis for the cultivation of tomato in continuous
cropping substrates.

Results

Effects of AMF on root morphology, plant growth and net
photosynthetic rate in tomato seedlings

To test the role of AMF in continuous cropping sub-
strates, we first compared the growth of tomato in con-
tinuous cropping substrates with or without inoculation
of AMF. AMF successfully colonized tomato roots, and
the colonization rate was approximately 32% in tomato
seedlings cultivated in the continuous cropping substrate
inoculation with AMF (AM) (Additional file 1: Figure
S1). The inoculation of AMF significantly promoted the
root growth compared with the tomato seedlings culti-
vated in the continuous cropping substrate (NM)
(Fig. 1a). The root length, total root surface area, total
root volume, average root diameter, and the number of
root tips of AM seedlings increased by 32, 30, 23, 6, and
27%, respectively, and the fresh weight and dry weight of
roots increased by 92 and 54%, respectively, compared
with those of the NM seedlings (Additional file 2: Table
S1). The plant height, stem diameter, fresh weight and
dry weight of AM seedlings increased by 29, 14, 30, and
23%, respectively, at 40 d in comparison to those ob-
served for the NM seedlings (Fig. 1b). Furthermore, the
net photosynthetic rate (Pn) and yield of AM seedlings
were higher than those observed for the NM seedlings
(Fig. 1c; Additional file 3: Figure S2). The results showed
that the inoculation of AMF significantly promoted the
growth of tomato seedlings in continuous cropping
substrates.

Effects of AMF on root activity and NADP-dehydrogenase
activity

AMEF have been shown to improve root development in
plants under adverse conditions [18, 19]. Furthermore,
the activity of NADP-dehydrogenase is closely related to
the root activity of plants [20]. Therefore, we measured
the root activity of NM and AM seedlings at 40 d and
the NADP-dehydrogenase activity of tomato roots at 20,
25, 30, 35, and 40 d after treatment. The root activity of
AM seedlings was 90% higher than that of NM seedlings
(Fig. 2a). Furthermore, the NADP-ME activity of AM
seedlings was significantly higher than that of NM seed-
lings (Fig. 2b). However, there was no significant differ-
ence in the activity of NADP-isocitrate dehydrogenase
(NADP-IDCH), glucose-6-phosphate  dehydrogenase
(G6PDH), or 6-phosphate gluconate dehydrogenase
(6PGDH), between NM and AM seedlings (Fig. 2c-e).



Wang et al. BMC Plant Biology (2021) 21:48

Page 3 of 12

NM

=n

Plant height (cm)

}
>
=<

[ T N

=]

Fresh weight (g plant™)

20 25 30 35 40
Time (d)

continuous cropping substrate inoculation with AMF

o
n
T
%

o
>
T

Pn (upmol m”s™)
9]

<>

NM AM

——AM

ES
T

Stem diameter (mm)
N w

20 25 30 35 40
Time (d)

=
)

—— AM

&
o
.

=
W
T

Dry weight (g plant™)
<>
(=)

=
=]

20 25 30 35 40
Time (d)

Fig. 1 Arbuscular mycorrhizal fungi (AMF) promoted growth of tomato seedlings in the continuous cropping substrates. a The root morphology
of NM and AM seedlings at 40 d. b The plant height, stem diameter, fresh and dry weight of NM and AM seedlings. ¢ The net photosynthetic
rate (Pn) of NM and AM seedlings at 40 d. The results represent the means + SE. Three independent experiments were performed, with similar
results. * represent significant difference. NM, tomato seedlings cultivated in continuous cropping substrate. AM, tomato seedlings cultivated in

Transcriptome analysis

To further investigate how AMF increased root activity,
we used transcriptome analysis to identify the differen-
tially expressed genes (DEGs) in the roots between NM
and AM seedlings. Illumina sequencing was performed
on 6 root cDNA libraries (NM and AM treatments, each
with 3 biological replicates) after cultivation of tomato
seedlings for 30 d. After removing the low-quality reads,
we obtained 397,526,276 clean reads (Additional file 4:
Table S2). The average values of Q20, Q30, and clean
read rate of the three NM libraries were 98, 92, and
92%, and these indexes of AM libraries were 98, 92, and
93%, respectively (Additional file 4: Table S2). Over 92%
of the reads matched the tomato genome, and more
than 90% of the reads were uniquely mapped (Add-
itional file 5: Table S3). The clustering heat map

intuitively showed the gene expression of NM and AM
with relatively consistent and good repeatability (Add-
itional file 6: Figure S3). Moreover, there were 4522
genes with significant differences between NM and AM,
including 2566 downregulated genes and 1956 upregu-
lated genes (Additional file 7: Table S4).

Gene ontology (GO) enrichment analysis

The DEGs of AM seedlings were significantly enriched
for 24 GO items in biological processes, 16 GO items in
cellular components, and 11 GO items in molecular
function (Fig. 3a; Additional file 8: Table S5). The GO
enrichment analysis results for biological processes
showed that GO terms, such as hydrogen peroxide de-
composition process (GO:0042744), defense response
(GO:0006952), response to oxidative stress (GO:
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Fig. 2 Effects of arbuscular mycorrhizal fungi (AMF) inoculation on the root and NADP-dehydrogenase activity of tomato seedlings. a The root
activity of NM and AM seedlings at 40 d. b The activity of NADP-ME in roots of NM and AM seedlings. ¢ The activity of NADP-ICDH in roots of
NM and AM seedlings. d The activity of G6PDH in roots of NM and AM seedlings. e The activity of 6PGDH in roots of NM and AM seedlings. The
results represent the means =+ SE. Three independent experiments were performed, with similar results. * represent significant difference. NM,
tomato seedlings cultivated in continuous cropping substrate. AM, tomato seedlings cultivated in continuous cropping substrate inoculation
with AMF

0006979), and response to biotic stimulus (GO:0009607)
were enriched after AMF inoculation (Fig. 3b; Additional
file 8: Table S5). The GO enrichment analysis results for
cell components indicated that more significantly differ-
ent genes were concentrated in the GO terms related to
the cell membrane, such as extracellular region (GO:
0005576), integral component of membrane (GO:
0016021), plasma membrane (GO:0005886), and plant
cell wall (GO:0009505) (Fig. 3c; Additional file 8: Table
S5). The GO enrichment analysis results for molecular
functions showed that GO items such as DNA-binding
transcription factor activity (GO:0003700), peroxidase
activity (GO:0004601), oxidoreductase activity (GO:
0016491), iron ion binding (GO:0005506), and monoox-
ygenase activity (GO:0004497) were enriched (Fig. 3d;
Additional file 8: Table S5).

Kyoto encyclopedia of genes and genomes (KEGG)
pathway enrichment analysis

The DEGs were mainly enriched in 33 KEGG pathways,
including cellular processes, environmental information
processing, genetic information processing, metabolism,
and organismal systems (Fig. 4a; Additional file 9: Table
S6). The top 20 enriched KEGG pathways (Q value is ar-
ranged in ascending order) were used to draw a bubble
chart (Fig. 4b; Additional file 9: Table S6). The results
showed that the DEGs were enriched in phenylpropane

biosynthesis (00940), biosynthesis of secondary metabo-
lites (01110), metabolic pathways (01100), MAPK signal-
ing pathways (04016), and plant hormone signal
transduction (04075). Next, we performed gene set en-
richment analysis (GSEA) using the genes related to
plant signal transduction from the results of KEGG en-
richment analysis (Fig. 4c; Additional file 10: Table S7)
and obtained 109 genes positively related to the pheno-
type of AM seedlings, of which 9 genes were related to
IAA (Fig. 4d). Interestingly, the GO enrichment results
showed that all 9 genes were enriched in the nucleus
(GO: 0005634), binding domain containing DNA (GO:
0003677), and were all enriched in the auxin activation
signal pathway (GO: 0009734) and transcriptional regu-
lation pathways (GO: 0006355). In addition, ARFS5, an
auxin regulator, was enriched in the biological process
of hormone response (GO:0009725). Interestingly, the
promoters of NADP-MEI and NADP-ME2 contained
the specific binding sites for ARF5 (Fig. 4e), indicating
that ARF5 might directly regulate the expression of
NADP-ME1 and NADP-ME2.

Effects of AMF on endogenous root hormone

Transcriptome analysis showed that genes related to
plant hormone signal transduction responded to AMF
colonization. Therefore, we analyzed the concentrations
of IAA, gibberellin (GA3), abscisic acid (ABA), cytokinin
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Fig. 3 GO enrichment analysis the differentially expressed genes (DEGs) between NM and AM seedlings. a The significantly enriched 24 GO terms
in the biological processes, 16 GO terms in the cellular components, and 11 GO terms in the molecular functions. b The highly enriched in the
GO term of biological processes. ¢ The highly enriched in the GO term of the cellular components. d The highly enriched in the GO term of the

(CTK), and strigolactone (SL) in the roots of tomato
seedlings. The results showed that the concentrations of
IAA and CTK in the roots of AM seedlings significantly
increased, while the concentrations of ABA significantly
decreased, and the concentrations of GAz and SL did
not change compared with those in the NM seedlings
(Fig. 5). These results indicated that the AMF
colonization of the roots of tomato seedlings modulated
endogenous hormone levels, which presumably further
affected other physiological and metabolic processes.

Response of NADP-MEs to hormones

To verify whether hormones mediated root activity, to-
mato seedlings were treated with IAA, GA;, ABA, CTK,
and SL, and qPCR was used to test the dynamic expres-
sion patterns of NADP-MEI and NADP-ME2. The re-
sults showed that these 2 genes responded to all 5
hormones (Additional file 11: Figure S4). The expression
of NADP-MEI and NADP-ME2 was upregulated by
IAA, and the gene expression remained highly upregu-
lated from 1h to 12h after treatment, and the expres-
sion characteristics of these 2 genes were consistent
(Additional file 11: Figure S4a). However, ABA

significantly reduced the expression of NADP-MEI and
NADP-ME?2 (Additional file 11: Figure S4c).

Effects of IAA on AMF-induced root activity

To clarify the role of IAA in AMF-induced root activity,
we investigated the effects of IAA and 2,3,5-triiodoben-
zoic acid (TIBA, an auxin polar transport inhibitor) on
root activity, NADP-ME activity, and NADP-MEI and
NADP-ME?2 expression levels in tomato seedlings culti-
vated in continuous cropping substrate with or without
AMF inoculation. The application of IAA significantly
promoted tomato seedlings growth after 15 d of treat-
ment, while the application of TIBA significantly inhib-
ited the growth of tomato seedlings compared with that
in the NM seedlings (Fig. 6a, b). Furthermore, the root
activity of AM and tomato seedlings cultivated in the
continuous cropping substrate irrigated with IAA (NI)
increased by 65 and 27%, respectively, while the root ac-
tivity of tomato seedlings cultivated in the continuous
cropping substrate irrigated with TIBA (NT) decreased
by 54% compared with that in NM seedlings (Fig. 6c).
Strikingly, the root activity of tomato seedlings cultivated
in the continuous cropping substrate inoculation with
AMF and irrigated with TIBA (AT) was significantly
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lower than that in the AM seedlings (Fig. 6¢). As shown
in Fig. 6d, the NADP-ME activity of AT seedlings mark-
edly decreased compared with that in the AM seedlings.
The NADP-ME activity of NI seedlings significantly in-
creased compared with that in the NM seedlings (Fig.
6d). In contrast, the NADP-ME activity of NT seedlings
decreased compared with that of NM seedlings (Fig. 6d).
However, the inhibitory effects of TIBA were amelio-
rated by the application of IAA (Fig. 6d).

Gene expression results showed that the expression of
NADP-ME1 and NADP-ME2 in AM plants was higher
than that in NM plants (Fig. 6e, f). Compared with NM
and AM, TIBA significantly reduced the expression of
NADP-ME1 and NADP-ME2 in NT and AT plants; in
contrast, the application of IAA significantly increased

the expression of NADP-ME1 and NADP-ME?2 (Fig. 6e,
f). The gene expression of NADP-MEI and NADP-ME?2
in tomato seedlings cultivated in the continuous crop-
ping substrate irrigated with TIBA, and then irrigated
with TAA after 24 h (NTI) was consistent with the trend
of NADP-ME enzyme activity (Fig. 6d-f). The above re-
sults indicated that IAA mediated the expression of
NADP-MEI and NADP-ME?2 and root activity of tomato
seedlings in continuous cropping substrates.

Discussion

AMF promoted tomato seedling growth in continuous
cropping substrate

Compared with fresh substrates, continuous cropping
substrates have many limitations, such as lower pH value,
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decreased nutrient content, reduced permeability, and im-
balanced microbial community structure [3]. Recently, the
use of beneficial microorganisms has become increasingly
popular to maintain soil fertility and crop productivity
[21]. AMF play a critical role in plant response to biotic
and abiotic stresses [15, 22—24]. AMF can reduce the risk
of ionic toxicity and cell membrane damage by decreasing
Na" absorption and increasing antioxidant enzyme activity
in cucumber [25]. Studies have shown that AMF signifi-
cantly improve the physicochemical properties and en-
zyme activities of continuous cropping systems and
promote the absorption of nutrients, resulting in pro-
moted plant growth and increased yield [15, 16, 26]. Con-
sistent with the previous studies, AMF incorporation into
the continuous cropping substrate remarkably improved
the growth of tomato seedlings and enhanced the yield of
tomato (Fig. 1; Additional file 3: Figure S2). These results
indicate that the inoculation of AMF in continuous crop-
ping substrates is an effective way to relieve continuous
cropping obstacles.

AMF induced an increase in endogenous IAA in tomato
roots

It has been shown that the inoculation of AMF can regu-
late hormone levels in plants [27, 28]. In this study, the in-
oculation of AMF significantly increased IAA and CTK
concentrations in tomato roots and significantly reduced
ABA concentrations (Fig. 5). Similarly, AMF increased the
levels of TAA and CTK, decreased ABA levels, and en-
hanced hormone homeostasis in the damaged roots of
maize [29]. Furthermore, AMF inoculation significantly
increased the IAA content in the root system of trifoliate
orange and decreased IAA loss in the root system [30]. In
this study, the enrichment analysis of the KEGG pathway
showed that the plant hormone signal transduction path-
way was relatively enriched (Fig. 4b). Through GSEA, 109
genes were positively correlated with the AM phenotype,
among which 9 genes were correlated with IAA (Fig. 4c,
d). Similarly, AMF can increase the IAA level and pro-
mote the growth and development of host plants under
stress by upregulating the expression of IAA transporter
genes and downregulating the expression of auxin efflux
genes [31]. In addition, AMF have a positive effect on the
regulation of IAA levels in plants under drought [32], salt
stress [33] and biotic stress [34]. These results suggested
that the increase in IAA levels in tomato roots induced by
AMF might be an important reason to promote the
growth and development of tomato seedlings in continu-
ous cropping substrates.

IAA mediated AMF-induced NADP-MEs expression and
NADP-ME activity

NADP-ME is a cytoplasmic protein that is expressed
during the development of tomato roots, stems, leaves,
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and fruits [35]. In particular, NADP-MEI is involved in
the regulation of malic acid content in the root apex,
and the absence of NADP-MEI results in an increase in
malic acid content. Furthermore, NADP-ME] also af-
fects the signal transmission process [36]. However,
NADP-ME2 plays an important role in the defense
mechanism of plants and seems to be involved in the
production of reactive oxygen species [37]. Our results
showed that NADP-MEI and NADP-ME?2 responded to
IAA, GA3, ABA, CTK, and SL (Additional file 11: Figure
S4). Among them, IAA significantly increased the ex-
pression of NADP-MEI and NADP-ME2 (Add-
itional file 11: Figure S4a), which indicated that the
induction of NADP-ME1 and NADP-ME2 by IAA might
be a response to the stress of tomato under continuous
cropping substrates. Notably, hormones play a crucial
role in regulating complex signaling networks in differ-
ent plant growth and development processes and in
plant responses to environmental stresses [38]. Likewise,
IAA is involved in regulating the defense response to
various biotrophic and necrotrophic pathogens [38]. Our
results showed that AMF inoculation significantly in-
creased the IAA concentration in tomato roots (Fig. 5).
Furthermore, IAA application significantly increased the
expression levels of NADP-MEI and NADP-ME2,
NADP-ME activity, root activity, and the growth of
tomato seedlings cultivated in continuous cropping sub-
strates (Fig. 6). However, these effects were compro-
mised when plants were treated with TIBA (Fig. 6).
Similarly, AMF inoculation promotes the accumulation
of endogenous IAA to improve the root system and nu-
trient absorption under stress conditions [39]. Exogen-
ous IAA significantly increases the activity of NADP-ME
in Malus baccata (L.) Borkh. [40]. Thus, AMF inocula-
tion improved the endogenous IAA level in plant roots
to increase the expression of NADP-ME1 and NADP-
ME2 and NADP-ME activity.

Conclusions

In conclusion, our study revealed that IAA mediates the
AMF-promoted tomato growth and NADP-MEs expres-
sion in continuous cropping substrates. Our study sug-
gests that the use of AMF can effectively improve the
growth of tomato cultivated in continuous cropping sub-
strates, thereby showing a promising solution for the re-
use of continuous cropping substrates with AMF.

Methods

Plant materials and treatments

Tomato (Solanum lycopersicum L. cv hezuo 903, ob-
tained from Shanghai Changzhong Tomato Seed Indus-
try Co., Ltd.) was used in this study. The AMF used in
this study was an isolate of Funneliformis mosseae (BGC
HEB07B, 1511C0001BGCAMO0049, obtained from
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Huaian Chaimihe Agriculture Science and Technology
Co., Ltd.), which was obtained through propagation with
maize (Zea mays L.) as previously described [41].

The continuous cropping substrate, which had been
used for the cultivation (complete growth cycle) of pep-
per and eggplant, was sterilized and then used to culti-
vate tomato in this study. The physical properties of the
continuous cropping substrate deteriorated, the bulk
density (BD) significantly increased, and the values of
pH and electrical conductivity (EC) decreased (Add-
itional file 12: Table S8).

The tomato seeds were placed on moist filter paper
and germinated at 28 °C for 30 h in the dark. After ger-
mination, the seeds were sown in plastic pots containing
continuous cropping substrate or continuous cropping
substrate inoculated with F. mosseae at a dose of 600
spores per plant. Seedlings were cultivated in an artificial
growth chamber. The growth conditions were as follows:
25 + 2°C/18 + 2°C (day/night), 12h/12h (day/night)
photoperiod, 60-75% relative humidity, and 300 pmol
m ?s™' light density. The growth parameters, root
morphology, and Pn of tomato seedlings were deter-
mined at 40 d. The enzyme activity related to root activ-
ity was measured at 20, 25, 30, 35, and 40 d. The
transcriptome sequencing was performed at 30 d with 3
biological replicates.

Hormone treatments

Tomato seedlings were cultured in fresh substrate and
grown under in the same conditions as described above.
The tomato seedlings were watered with 50 ml of
100 pM GA3 (Solarbio, Beijing, China), IAA (Solarbio,
Beijing, China), ABA (Solarbio, Beijing, China), CTK
(Solarbio, Beijing, China), and SL (Solarbio, Beijing,
China) solution per plant, respectively, and the control
plants were watered with the same volume of deionized
water. Root samples were taken at 0, 1, 6, 12, and 24 h,
respectively, to determine the gene expression of NADP-
MEs.

IAA and TIBA treatment

To clarify the relationship between IAA and tomato root
activity and NADP-MEs, 15-d-old NM and AM tomato
seedlings were watered with 50 ml of 100 uM IAA or
TIBA (Aladdin, Shanghai, China), every 5 d, and the
control plants were watered with the same volume of de-
ionized water. There were 6 treatments in the experi-
ment, including NM, AM, AT, NT, NI, and NTI. Root
samples were taken at 30 d to determine the root activ-
ity, enzyme activities, and NADP-MEs expression.

Mycorrhizal colonization rate measurement
For measurement of the rate of mycorrhizal
colonization, fresh roots were collected at 30 d, cleaned
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and cut to 1-2cm and then incubated in 10% (w/v)
KOH (Sinopharm Chemical Reagent, Shanghai, China)
at 90 °C for 40 min. The roots were rinsed with distilled
water and then soaked in 2% lactic acid (Solarbio,
Beijing, China) at 90 °C for 20 min. Then, the roots were
stained with 0.05% Trypan Blue dye (Solarbio, Beijing,
China) at 90 °C for 30 min. After cooling, the root sam-
ples were decolored with destaining solution (distilled
water: lactic acid: glycerin [Sinopharm Chemical Re-
agent, Shanghai, China] =1:2:2, v/v) for 2—4 d at room
temperature. Thirty pieces of randomly selected stained
root fragments were observed with a Leica DM1000
microscope (Leica Microsystems, Wetzlar, Hesse,
Germany) to confirm the presence of fungal structures,
including intraradical mycelia, vesicles, and arbuscules.
The root colonization rate was measured as previously
described [42].

Morphological index and Pn measurement
The plant height and stem diameter were measured at
40 d according to previously described methods [43, 44].
After removing the plants from the cultivation pot, the
roots were washed with distilled water and the fresh
weight was measured with an electronic balance
(OHAUS, Parsippany, NJ, USA). The plant materials
were enclosed in envelopes and placed in an oven
(Shanghai Yiheng Scientific Instrument Co., Ltd., Shang-
hai, China) at 105°C for 30 min. Then, the oven
temperature was adjusted to 75°C for 2 d to obtain the
dry weight. A WinRHIZO LA2400 root scanner system
(Regent Instruments Inc., Québec, QC, Canada) was
used to collect root morphological indexes.

The Pn was measured with a portable photosynthesis
measurement system (Li-6400; Li-COR, Lincoln, NE,
USA) after 1h of light in the morning.

Root activity and related enzyme activities

The root activity of tomato was determined with the tri-
phenyltetrazolium chloride (TTC) method as previously
described [45].

The activities of 6PGDH, G6PDH, NADP-IDCH and
NADP-ME were measured by spectrophotometry, re-
cording the reduction of NADP at 340 nm [46, 47]. The
experiment was conducted at 25°C, and the reaction
system volume was 1 ml, including 50 mM HEPES (pH
7.6, Solarbio, Beijing, China), 2 mM MgCl, (Sinopharm
Chemical Reagent, Shanghai, China), 0.8 mM NADP
(Solarbio, Beijing, China) and plant samples. The reac-
tion was initiated by adding 5 mM 6-phosphate gluco-
nate (Aladdin, Shanghai, China), 5mM glucose 6-
phosphate (Solarbio, Beijing, China), 10 mM 2R,3S-isoci-
trate (Aladdin, Shanghai, China) and 10 mM malic acid
(Solarbio, Beijing, China), respectively.
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Analysis of the contents of IAA, GA3, CTK, ABA, and SL in
tomato roots

The hormone contents were determined at 30 d as pre-
viously described [48]. Tomato root tissue was fully
ground in liquid nitrogen, and transferred to a precooled
50-ml centrifuge tube that contained 4 ml of precooled
80% chromatographic methanol (Aladdin, Shanghai,
China). The mixture was placed on ice in the dark for
12 h. The tubes were centrifuged at 10000 g and 4 °C for
15 min, and the supernatant was transferred to another
50-ml tube and stored in a refrigerator at 4°C. After-
ward, 3 ml of 80% methanol was added to the remaining
precipitate 3 times, and the supernatants were com-
bined. Then, 1.0g of polyvinylpyrrolidone (Sinopharm
Chemical Reagent, Shanghai, China) was added to the
supernatant and shaken in a shaker at 4°C in the dark
for 1h. Subsequently, the mixture was centrifuged at
10000 g and 4°C for 15min, and the supernatant was
passed through a C18 extraction cartridge (Waters, Mil-
ford, MA, USA) that had already been rinsed in the dark.
The liquid was stored in a 50-ml centrifuge tube and
freeze-dried in vacuum for 3 d under dark conditions.
Then, 1 ml of precooled chromatographic methanol was
added to the tube to completely dissolve the hormone,
and the samples were filtered with a 0.45-pm organic
microfiltration membrane before loading. The samples
were detected with a high-performance liquid chroma-
tography 1525 system (Waters, Milford, MA, USA).

gPCR analysis

Total RNA was isolated from tomato roots with the
RNA Simple Total RNA Kit (Tiangen, Beijing, China).
Total RNA (1 pg) was reverse transcribed into cDNA
using HiScript® II Q RT SuperMix (+ gDNA-wiper)
(Vazyme, Nanjing, China) for qPCR. qPCR assays
were performed using ChamQ Universal SYBR-qPCR
Master Mix (Vazyme, Nanjing, China) in a StepOne
(TM) real-time PCR system (Applied Biosystems, Fos-
ter, CA, USA). The tomato Ubi3 gene was used as an
internal control. The primer sequences are shown in
Additional file 13: Table S9. The relative gene expres-
sion was calculated as described by Livak and
Schmittgen [49].

RNA extraction, cDNA library construction and Illumina
sequencing

Total RNA was extracted from the roots of tomato seed-
lings using TRIzol Reagent (Invitrogen, Carlsbad, CA,
USA). The RNA quality and purity were verified by a
Nanodrop 2000 (Thermo Fisher Scientific, Rockford, IL,
USA) and electrophoresis in a 1.0% agarose gel. The
mRNAs were purified from total RNA using poly-T
oligo-attached magnetic beads (Invitrogen, Carlsbad,
CA, USA). Subsequently, the mRNAs were fragmented,
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and cDNA was synthesized using random hexamers,
DNA polymerase I (Thermo Fisher Scientific, Rockford,
IL, USA) and RNase H (Thermo Fisher Scientific, Rock-
ford, IL, USA). The purified double-stranded cDNAs
were ligated to adaptors for Illumina paired-end sequen-
cing. An Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA) and ABI real-time RT-PCR
(Applied Biosystems, Foster, CA, USA) were used to ver-
ify the quality and quantity of the library, respectively.
The cDNA libraries were sequenced with the Illumina
HiSeq2000 platform (Illumina, San Diego, CA, USA) by
the Beijing Genomics Institute.

Sequence data analysis and annotation

After the raw reads, adaptor sequences and low-quality
reads were removed, all the clean reads were mapped to
the tomato reference genome using TopHat v1.4.0 [50].
The transcript abundance was normalized by the frag-
ments per kilobase of exon per million fragments
mapped using Cufflinks [51].

Identification of DEGs

The significance of the gene expression difference was
recognized based on the false discovery rate (FDR) value
less than 0.01 and |logy(fold change)| = 2. After
normalization, hierarchical clustering and k-means clus-
tering analysis of the expression patterns were per-
formed using Mutiexperimental Viewer v4.7 [52].

GO and KEGG enrichment analysis

For identification of putative biological functions and
pathways of the DEGs, the GO and KEGG database were
searched for annotation. GO classification was per-
formed by WEGO [53]. The AgriGO and KOBAS2.0
packages were used to analyze the enrichment of GO
and KEGG at a significance cutoff of 0.05 FDR, respect-
ively [54, 55].

Statistical analysis
The experiment was carried out in a completely ran-
domized design with three independent replicates, and
each replicate contained 12 plants. Significant differ-
ences (P<0.05) between treatments were determined
using Tukey’s test.
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